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The instability of the interface separating a denser fluid from
a lighter one below it has applications to the surroundings of
massive stars – both when they are born and when they die.

In school physics, a pencil standing vertically on its point is a
standard example of unstable equilibrium – the slightest push in
any direction, and it would fall to the ground. One would think
that the study of such phenomena would be only of academic in-
terest. The article by Chirag Kalelkar, in the classroom section
of this issue, demonstrates the Rayleigh–Taylor instability in the
laboratory and shows how interesting and rich this phenomenon
can be. This is a good opportunity to introduce the same theme
in a different context, and on a grander scale – the energetic phe-
nomena around massive stars. On this scale, surface tension and
viscosity do not play a role. One should also bear in mind the
different style of working often adopted in astrophysics. Rough
estimates are first made based on simplified models to see if a
given phenomenon is likely to occur in a certain situation. Once
this is established, elaborate numerical simulations can be carried
out and compared with the observations. This article will only
deal with simplified physical pictures and should be read keep-
ing in mind that the rigorous treatment is needed for real-world
applications.

Rayleigh is the famous 19th century classical physicist known
for his explanation of the blue of the sky and his monumental
work on sound. Incidentally, ‘Rayleigh’ is a title he assumed after
becoming a Lord in the English tradition – his real name was J W
Strutt which lacks the majesty of his assumed title. In any case, in
1883, he asked himself the following question – what happens if a
heavy fluid sits on top of a light one? (Figure 1(a)). We will start Keywords

Rayleigh–Taylor instability, Kelvin–

Helmholtz instability, effective gravity.
to answer this question by considering the opposite situation – a
light fluid on top of a heavy one (Figure 1(b)), say oil on water.
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Figure 1. (a) Disturb-

ing the interface between a

heavy fluid on top and a

lighter fluid below. This

is an unstable situation, and

the height of the disturbance

grows exponentially at early

times. (b) A sinusoidal dis-

turbance of height h on an

interface separating a lighter

fluid (oil) on top of a heavier

fluid (water) is stable, and

hence undergoes oscillatory

motion after it is disturbed.

(a) (b)

We should emphasize that both situations are in equilibrium when
the interface is horizontal. The pressure at each level equals the
total weight of the column of fluid over a unit area. Hence, each
fluid element has zero net force on it when there is no disturbance.

Figure 1(b) includes a small sinusoidal displacement δz(x) =
h sin kx of the boundary between the two fluids in a deep tank.
The length of the tank ‘L’ has been chosen so that one wave
fits into it, so kL = 2π. The width of the tank, perpendicular
to the plane of the figure, is denoted by ‘w’. We estimate the
effect of the deformation on the potential energy. Figure 1(b)
shows how a volume of the lower fluid of the order h(L/2)w,
has been raised to a height of the order of h. One could make
more accurate estimates, but this is all we need. The potential
energy of the lower fluid has increased by δVl ∼ ρl Lwh2. At
the same time, the potential energy of the upper fluid has changed
in the opposite direction by δVu ∼ −ρu Lwh2. In this case, a vol-
ume of fluid of the order wLh of density ρu has been moved
downwards by an amount of the order of h. The total change in
potential energy due to the displacement of the interface is there-
fore, δV ∼ (ρl−ρu) wLh2. The kinetic energy associated with this
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movement is of the order,

(ρu + ρl) wL2
(
dh
dt

)2
.

There is an important point to be noted here – why have we moved
a larger volume wL2 to calculate the kinetic energy, compared to
the smaller volume wLh which we used in calculating the poten-
tial energy? The reason is that the fluid is assumed to be incom-
pressible. The up-down motion of the interface necessarily has to
disturb the fluid, all the way down to a depth of the order of L, if
it is to transfer the fluid over a distance of L. We are assuming
here that the depth of the tank is greater than L. This holds for the
fluid on both sides of the boundary.

We can now see an analogy to the harmonic oscillator, for which
the potential and kinetic energies are proportional to kx2

and m
(
dx
dt

)2
. We therefore conclude that such a displacement h(t)

will oscillate at a frequency given by the analogue of ω2 = k/m
for the harmonic oscillator. This would now be given by,

ω2 ∼ (ρl − ρu)
(ρl + ρl)

g/L .

We have thus estimated the frequency of oscillation of the stable
interface between a lighter fluid sitting above a heavier fluid. The
result of a proper calculation is,

ω2 =
(ρl − ρu)
(ρl + ρl)

g(2π/L) .

This formula describes
the propagation of deep
water waves in the case
when the upper medium
is air. We have assumed
that the depth is greater
than the wavelength L
here, and we have
analyzed a standing
wave.

This is a positive quantity because ρl > ρu. This formula de-
scribes the propagation of deep water waves in the case when
the upper medium is air. We have assumed that the depth is
greater than the wavelength L here, and we have analyzed a stand-
ing wave. But the relation between frequency and wavelength
works for propagating waves as well. This problem was tackled
by Laplace, and brought to final form by Airy in 1840, well before
Rayleigh’s work.
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Figure 2. A mass confined

to a circle by a rigid spoke

undergoes stable oscillations

near the bottom. But the

displacement grows near the

top which is an unstable po-

sition.

Coming back to our original problem, what happens when the
heavier fluid is above the lighter fluid, as in Figure 1(a)? The cal-
culation of the kinetic energy remains the same, but the potential
energy now changes sign. We can approach the problem by draw-
ing an analogy with the simple pendulum The one modification
is that we use a rigid spoke, rather than a string, connecting the
bob and the suspension (Figure 2). But now, the potential energy
change due to a small displacement has to be negative and propor-
tional to the square of the displacement for small displacements.
This is exactly the situation near the top of the circle along which
the bob moves in Figure 2. Clearly, the bob will fall down on one
side or the other – any small displacement will continue to grow11In laboratory situations, at

short wavelengths, a third con-

tribution to the energy comes

from the surface tension be-

tween the two fluids. This is al-

ways positive since the area of

the interface increases when it

is disturbed. This can stabilize

an otherwise unstable situation

(See Chirag Kalelkar’s article).

.

There is also a more mathematical way of viewing this situa-
tion. In the stable case, oscillations are described by trigonomet-
ric functions which can be written as exponentials of imaginary
quantities. For example, cos (ωt) = (exp (iωt) + exp (−iωt))/2.
Here ω is a real quantity since we found a positive value for
ω2. Now in the unstable case, we have a negative value for ω2,
which means that ω is a pure imaginary quantity, which we de-
note by ±iα. That means that our earlier solution will now contain
exp(±αt). Unless the initial conditions are very special, the grow-
ing exponential – positive sign in the exponent – will not be zero
and will dominate at large times. The quantity α is, therefore,
to be interpreted as a growth rate. In a time 1/α, the amplitude
grows by a factor, e = 2.71828....
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Figure 3. (a) Newly

formed stars in the Orion

region. The dark features

could be a product of the

Rayleigh–Taylor instability

(Image courtesy: NASA

Hubble space telescope).

(b) The remnant of the

supernova which was seen

by the astronomer Tycho

Brahe in 1572. Some of the

features seen in the gas are

attributed to the Rayleigh–

Taylor instability (Image

courtesy: NASA, Chandra

observatory). (c) Our own

atmosphere has layers in

relative motion. This picture

shows that the interface has

rolled up, as made visible

by clouds. This is one of the

early phases of the Kelvin–

Helmholtz instability.

(Source:

http://en.wikipedia.org/wiki/

Image: Wavecloudsdu-

val.jpg)

(a)

(b)

(c)

In both the unstable and All serious applications
of instability analysis
take into account what
happens when the
amplitude grows large.

stable cases, the analysis so far, based
on the harmonic oscillator analogy, assumes that the amplitudes
are small. In the stable case, this assumption is at least internally
consistent – if we start small, it stays small. However, in the un-
stable case, it will sooner or later become large, and the so-called
‘linear analysis’ will fail. So, all serious applications of instabil-
ity analysis take into account what happens when the amplitude
grows large. Quite often, this is best done by numerical simu-
lations. One exception is a discussion of the instability at large
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amplitudes by Fermi (see suggested reading). This is carried out
in his characteristic style of insightful simplification, backed up
by analysis and numerical estimates.

When does the famous fluid scientist G I Taylor22See Resonance, Vol.9, No.10,

2004.

come into the
picture? Surprisingly, in the early 1950s. He realized that the sit-
uation envisaged by Rayleigh would arise whenever a light fluid
pushes against a heavier fluid and accelerates it. In this acceler-
ated frame of reference, we can work with an effective gravity
which is minus the acceleration. (The textbook example is that
if we are placed in an elevator accelerated upwards, we feel as if
we are being pushed downwards. An object released drops to the
floor, exactly as if gravity were present.) This effective gravity
points towards the lighter fluid, which is, therefore, ‘below’ the
heavier one – an unstable situation. Equally, if a heavy fluid is
decelerated by colliding with a light fluid, the effective gravity
points towards the lighter fluid, and we have an instability.

Taylor’s own interest was possibly in the physics of atomic explo-
sions in the atmosphere, which he was working on at that time.
His work has been utilized by astrophysicists to understand some
remarkable features seen in the gas surrounding young stars. An
example is the Orion Nebula (Figure 3(a)) with recently formed
stars, much more massive than the Sun, shining into the surround-
ing gas. These stars are formed from dense molecular gas. Once
they start nuclear reactions at the center, they emit strong ultra-
violet radiation. Some of them also send out matter in the form
of a more or less spherically symmetric wind (even our Sun has
wind, but it is relatively mild). The radiation and the wind push
against the surrounding gas, accelerating it outwards. We now
have the situation of a light fluid accelerating a heavy fluid. What
we are witnessing in the Orion Nebula is a very late stage of the
instability. The denser outer fluid here is not a gentle sinusoidal
wave – it has sharpened into ‘elephant trunks’. This explanation
has been explored using numerical simulations and is believed to
be broadly correct.

Similar ideas have been applied to supernova explosions. The
shell of material thrown out during the explosion of a star is
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denser than the surrounding interstellar material, which deceler-
ates it. Now, the effective gravity is outwards but again points
from the denser to the less dense medium, so that the same insta-
bility operates. The detailed astrophysics is beyond the scope of
this piece, but the picture is worth viewing (Figure 3(b)).

In the late stage of the Rayleigh–Taylor instability, the light, and
the heavy fluids are rushing past each other. This brings in
the Kelvin–Helmholtz instability3 3The Inveterate Tinkerer: 8.

Kelvin–Helmholtz Instability,

Chirag Kalelkar, Resonance,

Vol.22, No.10, pp.955–960,

2017.

. Again, Kelvin was just plain
William Thomson till he became a Lord! This instability can
thoroughly mix the two fluids as the interface widens in the late
stages. This mixing can play an important role in the astrophysics
of the gas around young stars4.

4Note that the KH instability

taps excess kinetic energy and

hence does not require a heav-

ier fluid above a lighter one.

In the Rayleigh–Taylor instability, we see a fluid almost at rest
initially, set into violent motion in the later stages. Clearly, this
energy comes from the potential energy of the heavy fluid de-
scending into the light fluid. The Kelvin–Helmholtz instability
pertains to two fluids moving at different speeds, separated by an
interface (which need not be thin in general). In this case, the
system has kinetic energy of the ordered relative motion. Some
of this is converted to the kinetic energy of motion perpendicular
to the interface, as the two layers penetrate each other. Initially,
this motion could be orderly – see the beautiful Figure 3(c). But
ultimately, this does become random. This kind of general pic-
ture, tapping a source of excess energy and using it to generate
motions, which ultimately become random, is useful in rational-
izing many kinds of instability, once found. However, it is not a
substitute for the hard work of investigating each problem numer-
ically and experimentally!
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