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Stars, other than the Sun, appear to our unaided eyes as
points of light. Large telescopes show an image whose size
is dictated by refractive index irregularities in the Earth’s at-
mosphere. The size of this blurring is much greater than that
of the star, and hence it is difficult to measure the stellar size.
Fizeau showed how one might overcome this limitation us-
ing the two-slit interference technique. It was Michelson who
carried out this programme and made the first direct mea-
surement of the giant star Betelguse in the constellation of
Orion. His value for the angular diameter, 47 milliarcsec-
onds or 2.6×10−7 radians, was completely confirmed by later
work following his methods. The key concept introduced was
‘fringe visibility’, which turned out to be very fruitful in the
later development of optics as well as astronomy.

1. Introduction

The nearest star to our solar system, called Proxima Centauri, is
about 260,000 times further away from us, than the Sun. The Sun
subtends approximately half a degree (roughly 10−2 radians) at
Earth. Therefore, a star similar to the Sun placed 200,000 times
further away would subtend 5 × 10−8 radians. In the more fa-
miliar angular units, this is 100 milliarcseconds (one degree =
60 arcminutes = 3600 arcseconds). In popular terms, this is the
angle subtended by a cricket pitch of 20 m length on the Earth,
as viewed from the Moon. This is just the case of the nearest Keywords

Fringes, interference, spectral

lines, interferometer, Fizeau

mask, angular size, parallax.

star. Many of the bright stars we see in the sky could be a hun-
dred times further away than this nearest star. If they were similar
to the Sun in size, measuring their angular sizes becomes a very
challenging task.
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The measurement ofThe measurement of the
angle subtended by a star

on Earth is rather
important for astronomy.

Knowing the distance,
we can multiply the
angle subtended in

radians by the distance
to obtain the physical

size of the star.

the angle subtended by a star on Earth is
rather important for astronomy. Knowing the distance (measured
using the parallax method ), we can multiply the angle subtended
in radians by the distance to obtain the physical size (the diame-
ter) of the star. Data on the spectrum, the mass, and the physical
size of a star enable astrophysicists to check their models of stars.
This gives confidence in applying the models more widely, even
when we cannot directly measure the angular size.

2. The Limitations of Telescopes

The smallest angle θmin which can be measured with confidence
by an ideal telescope depends on its diameter D and the wave-
length of the light used, λ. It is given in radians by θmin = λ/D
(Figure 1(a)). For a wavelength λ = 500 nm in the middle of the
visible spectrum, and D = 1 m, this formula gives 5×10−7 radians
or 100 milliarcseconds. It might therefore be barely possible to
measure the diameters of nearby stars, somewhat bigger than the
Sun, with a one metre telescope.

The largest telescopes available in Michelson’s time were not
more than about one metre in diameter. He therefore chose the
bright red star, Betelguse in the constellation of Orion11The name is derived from

Arabic for ‘the hand of Orion’,

since this constellation is

viewed as a human figure.

. This star
was known to be about 600 light years away – about 150 times
further away than the nearest star we mentioned earlier. It might
seem a poor candidate since a distant star would subtend a very
small angle. But there was already clear evidence that Betelguse
was no ordinary star but a giant. The apparent brightness was
greater than nearby stars, despite being much further away, The
apparent brightness is proportional to the true brightness, but also
to the inverse square of the distance. This means that the true
brightness of this star was hundreds of thousands of times greater
than the Sun, and this is in spite of being red22A red body emits much less

radiation per unit area than a

yellow one.

. All this implies
that the star had a very large area – it was a ‘giant’. Its diam-
eter might have, in principle, been measured by a large enough
telescope.

However, there was another fundamental difficulty. Even the best
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Figure 1. Image of a point

source (a) Ideal telescope:

The diameter of the lens (or

mirror) is D, and we have

a plane wavefront, shown

in blue, falling on it from

the point source. The im-

age is a diffraction pattern,

with a maximum at the cen-

tre and surrounded by weak

rings. The image size de-

pends on the focal length,

but corresponds to an an-

gle λ/D on the sky (b) The

wavefront is now randomly

distorted by the Earth’s at-

mosphere, as shown by the

blue line. Over a size of

r0 (typically 10 cm at vis-

ible wavelengths), the error

in phase is of the order of a

radian. The image consists

of a region of (angular) size

λ/r0, with random interfer-

ence maxima and minima.

The atmosphere changes in

a short time of the order of

10 milliseconds. So in a few

seconds this averages to a

smooth image of size λ/r0

which is about 1 arcsecond.

This is shown as a dashed

line.

made telescopes do not produce the ideal image of angular size
θmin which we have discussed above. The reason is explained
with more quantitative detail in Figure 1(b). To produce a sharp
image, light from the distant star must converge at the focus of
the telescope. At the peak of the image, light arriving from all
parts of the mirror has to be in phase, to produce the maximum
intensity. Any errors in the mirror or refractive index variations
in the atmosphere, spoil this good phase relationship. As a result,
the intensity at the focus goes down. However, since the total
energy is the same, namely what fell on the mirror, it simply gets
spread over a larger region of the focal plane. In other words, we
have a blurred image. Its size for a typical telescope is around one
arcsecond or 5× 10−6 radians. So it is clear that the actual size of
the star would be vary hard to find from such a blurred image.

3. Using the Interference of Light

Fizeau, the great French pioneer of optics, came up with a method
to partially overcome this difficulty. He proposed and imple-
mented what is now called a ‘Fizeau mask’. The idea is to cover
the whole telescope with an opaque object, leaving just two holes
less than 10 cm in size. Over 10 cm, the path differences caused
by refractive index variations in the atmosphere are significantly
less than one wavelength (under good conditions!). Therefore,
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Box 1. Fizeau’s Proposal for Measuring the Size of a Star

There exists indeed for the majority of the phenomena of interference, such as the fringes of Young, those

of the mirrors of Fresnel, and those which give place to the scintillation of stars according to Arago, a

relation remarkable and necessary between the dimension of the fringes and that of the source of light, so

that finely spaced fringes cannot occur when the source of light has anything more than almost insensible

angular dimensions; from where it is perhaps allowed to hope that based on this principle, while forming

the interference fringes at the centre of the large instruments intended to observe stars, for example, by

means of two broad very-isolated slits, it will become possible to obtain some new data on the angular

diameters of these stars.

when the light from these two apertures is combined at the fo-
cus of the telescope, we get a nice two-slit interference pattern
(Figure 2). It is true that the path difference between the two aper-
tures could be much more than the wavelength, but that only shifts
the centre of the pattern. This path difference also changes with
time, because the atmospheric refractive index irregularities are
not fixed. They come from temperature variations and are blown
by the wind. This means that the entire fringe pattern will move,
and the observer has to be quick enough to catch the fringes. But
a moving fringe pattern should be regarded as a lesser evil than
a blurred image as we will see below. Box 1 has a rough transla-
tion from the French of Fizeau’s original proposal, which is com-
pressed into a single sentence!

He is just saying that closely spaced fringes get washed out if the
source of light illuminating the two slits is too large – which was
known. The newReal light sources, such

as stars, are a
combination of multiple

monochromatic point
sources. These sources

are considered
‘incoherent’ with respect
to each other as they do

not have any stable
phase relationship.

idea is that this disappearance of interference
fringes can be exploited to measure the angular size of the source,
even if it is a star, by placing the slits quite far apart in front of a
large telescope. This is illustrated and explained qualitatively in
Figure 2(a) and its caption. The fundamental concept to keep in
mind for the rest of this article is as follows.

A monochromatic point source – MPS for short – produces in-
terference fringes, when the light from it reaches the detector by
different paths. This is an ideal situation. Any real source, such
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Figure 2. (a) The Fizeau

mask. Light from a dis-

tant point source falls on

the telescope’s primary mir-

ror, but only through two

smaller holes of size 10 cm

or less – A and B in the fig-

ure. This ensures that the

two interfereing wavefronts

are approximately plane, in

spite of atmospheric distur-

bances. The blue lines are

rays which show the light

paths which focus after two

reflections at the bottom of

the figure. Each of the im-

ages would correspond to

approximately 1 arcsecond

on the sky, and they would

overlap to give interference

fringes. In practice, the

holes need not be at the

top but smaller holes nearer

the focus would achieve the

same effect. (b) Fringes at

the focus for a binary star

with two equal components.

Depending on the baseline,

we get fringe visibility vary-

ing from 1 to 0.

as a star, or a gas of atoms emitting a spectrum, is regarded as
a combination of multiple MPS’. These sources, at different loca-
tions, and at different frequencies, do not have any stable phase
relationship. We call such sources ‘incoherent’ with respect to
each other. We calculate the interference pattern due to a each
MPS separately, and add the intensities of the different patterns.

This model of light served for what are called the ‘thermal’ sources,
and only had to be improved when laser sources with long-lasting
phase stability, were introduced – but that is another story.

The basic conclusion from Figure 2(b) and the discussion in the
caption is that when we form interference fringes from a star with
two apertures as Fizeau suggested, we get clearly visible fringes
when the spacing between the apertures, denoted by b is very
small. As b increases, the fringes become weaker. As the sepa-
ration approaches a value of the order of bmax � λ/Θ, the fringes
disappear. The reason is simply that the fringe patterns due to the
different parts of the source have maxima at different locations
on the screen. Once these locations are spread out by greater than
the fringe width λ/Θ, maxima of some parts of the source overlap
with the minima of others. The result is to reduce the variations
in intensity. Notice that this mathematical argument is the same
as used in discussing the destructive interference between two co-
herent sources3 3Produced from the same

source illuminating two slits.

. But do keep in mind that the physics is different
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– we are adding intensities which are positive quantities precisely
because the different parts of the source are incoherent.

This general principle is sufficient to appreciate the famous ex-
periment of Michelson and Pease in 1921, to which we now turn.
For a more quantitative formulation see Box 2.

Box 2. Fringe Visibility for Double and Single Stars

Let us first consider a system of two stars, separated by an angle Δα, each treated as a monochromatic point

source for simplicity. We can think of each star as producing a set of fringes. Because the two stars are not

coherent sources, we add the intensities in the two fringe patterns.

If I is the average intensity in a fringe pattern, with spacing x on the screen, the intensity at the point x is

described by the function I(x) = I(1 + cos(2πx/s)). Notice that this goes all the way from 0 to 2I.

It is clear that the contrast of the combined fringe pattern will be the best when the maxima of the fringe

pattern of one star fall on the maxima of the other. Take the intensities of the two stars to be I1 and I2
with I1 ≥ I2. In this case, the combined intensity of the two sets of fringes at a point x on the detector is

proportional to I1(1 + cos(2πx/s)) + I2(1 + cos(2πx/s)), where s is the fringe spacing. Note that we have

aligned the maxima of the two cosine α functions. The resulting pattern has a maximum proportional to

2(I1 + I2), and a minimum of zero. If, however, the maximum of one fringe pattern falls on the minimum of

the other, then the total intensity on the detector is given by I1(1 + cos(2πx/s)) + I2(1 − cos(2πx/s)). Note

the minus sign in the second term, which tells us that the second star fringe pattern has a dark fringe at

x = 0. Now the maximum intensity is given by 2I1 (when the cosine is 1) and the minimum by 2I2 (when

the cosine is −1). Michelson defined fringe visibility as V = (Imax − Imin)/(Imax + Imin).

This is a rather natural definition. An electrical engineer would call it the ratio of the AC component of the

intensity variation, which is (maximum − minimum)/2, to the DC component (maximum + minimum)/2.

We are dividing the amplitude of the sinusoidal intensity variations in the pattern by the average intensity.

Clearly the maximum possible value is 1. In our example, when the two sets of fringes are aligned, maxi-

mum on maximum, we have Imin = 0, and hence V = 1. When the fringes are displaced by half the fringe

width – maximum falling on minimum, we can use the values of Imax = 2I1 and Imin = 2I2 calculated earlier.

This gives V = (I1 − I2)/(I1 + I2). When the two stars are equally bright, the fringe visibility is zero in this

case. We can understand this without calculation – two sets of fringes of equal strength but with maximum

of one falling on the minimum of the other will add up to a uniform intensity as a function of x – the fringes

are invisible.

The condition for the alignment of the two fringe patterns is explained in Figure 2 and can be understood as

follows. The separation of the centres of the two masks is denoted by b which stands for ‘baseline’, a term

we will use later.

Contd.
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Box 2. Contd.

A distant source of light on the perpendicular bisector of the two masks, will have zero path difference.

Moving the source by a small angle α (much less than one radian) away from this direction will create a

path difference p = b × α. So if we have two stars separated by Δα the two path differences at the two

apertures of the mask will themselves differ by Δp = bΔα. If this is an integer number of wavelengths, then

the maxima of the two fringe patterns will fall on top of each other. Note that this is not sensitive to further

path differences after the two masks, which are common to both sets of fringes. The actual separation of

the fringes on the detector depends on the angle made between the two beams at the detector, which can be

chosen by the experimenter, but this again does not affect the condition for alignment of the maxima of the

two fringe patterns. So the fringe visibility is really a property of the light wave from the two stars at two

points separated by the baseline b.

The more general case is when the two sets of fringes are neither aligned maximum to maximum nor

maximum to minimum. We can choose the origin of x to be the maximum of the fringe pattern of one of

the stars which is then I1(x) = I1(1 + cos(2πx/s)). The fringe pattern of the second star is displaced by

an amount φ, and is given by I2(x) = I2(1 + cos(2πx/s + φ)). The displacement φ between the two fringe

patterns depends on the angular separation of the two stars. The two previous cases which we discussed

were φ = 2nπ (path differences differ by wavelength times an integer) and φ = (2n + 1)π, corresponding to

Δp, an odd number of half wavelengths. The general expression is φ = 2πΔp/λ = 2πbΔα/λ.

It is a mathematical exercise to find the maximum and minimum of I1(x) + I2(x) and hence calculate the

fringe visibility. This turns out to be very simple in the case of a symmetrical double star, I1 = I2. In this

case we can rewrite I(x) = 2I(1 + cos(2πx/s + φ/2) cos(φ/2)) using the standard trigonometric identity

for cosC + cos D. Dividing the amplitude of the variation, 2I cos φ/2, by the average 2I, the visibility at

baseline b is just V(b) = cos(φ/2) = cos(πbΔα/λ). This agrees with our earlier result for the two cases

φ = 2nπ and φ = (2n + 1)π. (Note that a visibility of −1 simply means that the fringes have reversed – the

maxima have been replaced by minima and vice versa)

We now come to the case of a single star, which is no longer treated as a point source, but as a circular disc.

From Figure A, we see that the star can be split into a number of fictitious double stars whose separation 2r,

goes all the way from 0 to 2R, where R is the radius of the star. Further, the figure shows that these double

stars are symmetric, and the intensity falls off as we increase the separation from 0 to 2R. The intensity is

just given by the area of the strip which is 2
√

(R2 − r2)dr. Since our expression for the visibility of a double

star is in terms of angles, we should set Δα = 2r/D where D is the distance to the star.

We can now use our earlier result for the double star to build up the visibility of the fringes produced by a

uniformly illuminated circular disc. Contd.

∗ Note: We have assumed that the intensity is uniform over the disc, so that the amount of light received is proportional to the area

of the strip. Further, by making the strip perpendicular to the baseline, we ensure that the phase differences at the two apertures

are the same for all parts of the strip – it is only movement along the baseline which generates phase change.
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Box 2. Contd.

We divide the amplitude of the fringe pattern by the total intensity. The numerator is a sum of the binary

star visibility expressions for pairs of strips going from r = 0 to r = R. The denominator is just the total

intensity. The resulting expression for the fringe visibility measured at a baseline b is:

V(b) =

∫ R

0
I
√

(R2 − r2) cos(π br/Dλ)dr
∫ R

0
I
√

(R2 − r2)dr

Changing variables to r/D, it is clear that this is a function of R/D = Θ, the angular diameter of the star.

The resultant visibility function is plotted in Figure B as a function of b. Notice that the fringe visibility

decreases as the baseline b increases, and becomes zero for b = 1.22λ/Θ, where Θ is the angular diameter

of the star. Unlike in the case of the binary star, the visibility does not rise back to 1, but undergoes damped

oscillations. This same function occurs as the diffraction pattern of a circular aperture. As earlier, the

negative values mean that the fringes reverse after becoming invisible, maxima appearing where minima

were earlier.

Figure A. Left Disssection of a circular disc into binary pairs of increasing separation and decreasing intensity

(D is maximum, A is minimum). Right Intensity as a function of separation, given by
√

1 − (r/R)2).

Figure B. Visibility as a function of the observing baseline (mirror separation) for a star, modeled

as a uniformly illuminated disc of angular diamter Θ. This plot is based on the equation given in Box 2,

and shows that the fringes disappear at a baseline b = 1.22 × λ/Θ.
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4. The Michelson–Pease Experiment

Michelson used two apertures Michelson used two
apertures on a 1.5 m
telescope to find the
diameters of the moons
of Jupiter, as early as
1890. His ambition was
to measure the diameters
of stars – angles which
were much smaller.

on a 1.5 m telescope to find the di-
ameters of the moons of Jupiter, as early as 1890. These are some-
what less than 1 arcsecond in angular size (the distance of Jupiter
from Earth varies, of course), and hence the baseline needed to
achieve zero fringe visibility is about 10 cm. His ambition was to
measure the diameters of stars – angles which were much smaller,
(by a factor of twenty and more). This clearly needed a larger
telescope, and one was completed in 1917 – the ‘Hooker tele-
scope’ with a 2.5 m diameter primary mirror, at Mount Wilson in
the western coast of the United States. The director of the obser-
vatory, G E Hale, was persuaded to allow modifications for this
experiment to be carried out. Its not clear whether such a permis-
sion would be granted by the director of an observatory today; he
would worry too much about potential damage!

Michelson came up with a more ambitious scheme. A large and
rigid steel beam, 6 m in length, was made on which plane mir-
rors could be mounted, and this was fixed on top of the telescope
(Figure 3). The schematic ray paths show how this simulated the
effect of two apertures spaced by 6 m, more than the telescope
diameter! The telescope itself provided the mechanism to bring
the light beams together where the interference fringes would be
observed with an eyepiece.

We quote the crucial paragraph from their paper below. Amateur
astronomers will recognise that α Orionis stands for the bright-
est star in the constellation of Orion, none other than Betelguse.
Other stars are named similarly – β Persei is the second brightest
star in Perseus.

The ‘zero fringe’ refers to a separate image with a small baseline
where one expects to see fringes on all stars if the instrument and
atmosphere are behaving properly.

On Dec 13, 1920, after preliminary settings on β
Persei with the mirrors separated by 81 inches (229
cm) and on β Persei, and γ Orionis with a separa-
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Figure 3. (a) Schematic
ray paths for the Michelson
stellar interferometer. (b)
The Hooker – also known
as the 100 inch telescope
at Mount Wilson observa-
tory, with the beam carry-
ing the mirrors mounted on
top. Image courtesy: George
Ellery Hale – The New
Heavens, Public Domain,
https://commons.wikimedia.
org/w/index.php?curid
=1223713

tion of 121 inches, thus insuring that the instrument
was in perfect adjustment, it was turned on α Orio-
nis and fringes across the interferometer image were
sought for some time, but they could not be found.
The seeing was very good and the zero fringes could
be picked up at will. When next turned on α Ca-
nis Minoris, the fringes stood out on both images
with practically no adjustment of the compensating
wedge, which furnishes a check on the disappear-
ance of the fringes for α Orionis.

We have placed the last sentence in bold – the final measurement
of the angular diameter depends on this. The beauty is that this
did not require quantitative measurement of the fringe visibility,
which would have been very difficult at that time. This reminds
us of the great detective Sherlock Holmes using the incident of
the dog that did not bark in the night time to solve a crime. The
famous Michelson–Morley experiment (see Amit Roys’ article in
this issue), is also a case of a null result – fringes which did not
move.

From Box 2, the baseline at which the fringes first disappear for
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a uniformly illuminated Multiplying the intensity
as a function of angle by
a trigonometric function
depending on the
baseline is nothing but a
Fourier transform.

disc of angular diameter Θ is given by
bmax = 1.22λ/Θ. For a wavelength of 550 nm and bmax = 3.07 m,
this gives Θ = 2.2 × 10−7 radians = 45 milliarcseconds.

Emboldened by this success and wanting to target other stars,
whose diameters were smaller, Michelson ventured to build a 15
m beam. However, this was not successful, and nor did anyone
else match this feat for decades. This brings out both the difficulty
of the technique and the skill of the experimenters.

5. Aftermath

Michelson himself generalised the expression for fringe visibil-
ity to objects more complicated than uniformly illuminated cir-
cular discs. Multiplying the intensity as a function of angle by a
trigonometric function depending on the baseline is nothing but a
Fourier transform. But characteristically, he did not say this. So
it was left to van Cittert and Zernike (both from Netherlands), in
the 1930s, to bring out the general idea that one could relate the
ability of two parts of the incoming light to interfere (fringe visi-
bility or coherence) to the source properties by such a transform.
In the 1950s, Emil Wolf, then in England, made the very impor-
tant theoretical point that most optical measurements are really
measurements of coherence, rather than electric fields. 4Urjit A Yajnik, Symmetry

and Mathematics, Resonance

Vol.20, No.3, pp. 264–

276, 2015; The Conception of

Photons - Part 1, Resonance,

Vol.20, No.12, pp.1085–1110,

2015; Part 2, Vol.21, No.1,

pp.49–69, 2016.

Rewrit-
ing optics in this way brings it closer to experimentally measured
quantities, rather than the underlying electric fields. Also, this re-
formulation goes over more smoothly into quantum optics, a very
significant step taken by George Sudarshan4.

On the astronomical side, this relation remained dormant till it
was brilliantly used by another community, working with radio
waves. Many people contributed to the application of Michel-
son’s interferometer concept to radio waves, but undoubtedly the
dominant figure was Martin Ryle of Cambridge University, Eng-
land, who received the Nobel Prize in 1974. He was able to use
pairs of radio telescopes which could be moved (and which were
in any case rotated by the Earth!) to map out the full visibil-
ity function Figure B, and make maps of complex distributions
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Figure 4. A view of six

antennas (out of a total of

30) of the Giant Metrewave

Radio Telescope in Kho-

dad, near the Pune Nasik

road. The waves falling on

each are converted into sig-

nals on optical fibres, then

taken to a central building

where they are ‘interfered’

in all possible ways, mak-

ing for 435 Michelson inter-

ferometers operating contin-

uously as the Earth rotates,

giving a good coverage of

baselines varying in both

length and direction. Im-

age Courtesy: National Cen-

tre for Radio Astrophysics

(www.ncra.tifr.res.in).

of radio waves emitted by astronomical objects. I cannot resist
including Figure 4, which is the Indian effort in this direction.
The picture shows some of the antennas of the GMRT (Giant
Metrewave Radio Telescope) of NCRA-TIFR (National Centre
for Radio Astrophysics of the Tata Institute of Fundamental Re-
search). This array of 30 telescopes is located near Pune, and can
be viewed as 30 × 29/2 = 435 Michelson interferometers, oper-
ating day and night, round the year, to explore the universe with
radio waves.

After 1980, Michelson’s principle, with many improvements, was
again applied to stars using visible light. The availability of elec-
tronic control systems and CCD detectors made much more au-
tomation and accuracy possible. Today, there are many such
projects, going upto a few 100 m in baseline, gazing at the stars
from many parts of the world, giving unique information on their
binary nature, sizes, shapes distorted by rotation, and even sur-
face features like spots, variability. For clarity, this article has
treated the light as perfectly monochromatic. In practice, a filter
can be used, or an arrangement like a prism to separate the fringe
patterns at different wavelengths. In fact, this yields even more
information about the star. The current status is covered in the
reference given in Suggested Reading.
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Suggested Reading

[1] A A Michelson and F G Pease,
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Rajaram Nityananda

School of Liberal Studies

Azim Premji University

PES South Campus

Electronic City

Bengaluru 560 100, India.

Email: rajaram.nityananda@

gmail.com

Astrophysical Journal, Vol.53, p.249, 1921, avail-

able on the web at: http://adsabs.harvard.edu/abs/1921ApJ....53..249

[2] Gerard van Belle gives a nice account of the history upto modern times in his

talk, available at:

http://nexsci.caltech.edu/workshop/2003/2003 MSS/07 Monday/

history 030706a.pdf (This includes the original French of Fizeaus pro-

posal)
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