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BODHIDEEP JOARDAR The Strand Magazine Door Number Problem, now eternally 
associated with Ramanujan, may be stated more generally 
as follows: A street has n houses numbered consecutively, the 

numbers starting from 1, and there is a house numbered x such that 
the sums of the house numbers on each side of x are the same. Find n 
and x, given that n lies within some specified range.

As per the stated information, 1 + 2 + … + (x – 1) = (x + 1) + (x + 2) 
+ … + n. Add 1 + 2 + … + (x – 1) + x to both sides:

2(1 + 2 + … + (x – 1)) + x = 1 + 2 + … + n.

The expression on the left side simplifies to x(x – 1) + x = x2. Hence:
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To solve this equation, Ramanujan used continued fractions. His 
approach has become part of history ever since! 

Our question is: Is there an approach apart from continued 
fractions? The answer is: Yes. I demonstrate such an approach. 
First I rearrange the above equation into a more familiar shape. 
Multiply both sides by 8 and then add 1 to both sides; I get:

8x2 + 1 = 4n(n + 1) + 1,

i.e.,

(2n + 1)2 – 8x2 = 1.

This is nothing but an instance of the Indian mathematician 
Brahmagupta’s Vargaprakriti, the indeterminate quadratic 
equation y2 – kx2 = 1 on which he worked in the 6th century CE. 

Solution of Ramanujan’s 
DOOR NUMBER PROBLEM by using 

VARGAPRAKRITI

Keywords: Door number problem, Vargaprakriti, Ramanujan, 
Brahmagupta, bhāvanā.

Student Corner – Featuring articles written by students.

C
la

ss
R

o
o

m



57Azim Premji University At Right Angles, March 2018

Here it is of the form y2 – 8x2 = 1, where y = 2n + 1. 
(See Box 1 for the history of this equation.)

Therefore, by finding the solutions (which are 
infinite in number) of y2 – 8x2 = 1, I should get 
solutions to the generalised Strand Magazine 
Door Number Problem.

According to the composition law (bhāvanā) 
found by Brahmagupta, if (y1, x1) and (y2, x2) are 
solutions to y2 – kx2 = 1, then so is (y1y2 + kx1x2,  
y1x2 + x1y2). By applying bhāvanā again and again, 
infinitely many solutions can be generated.

The most obvious solution of y2 – 8x2 = 1 is y = 3, 
x = 1, i.e., n = 1, x = 1. This solution corresponds 
to there being just one house in the street.

Starting with the pair (3, 1) and applying 
bhāvanā on itself, I get the solution

(32 + 8 ∙ 12, 2 ∙ 3 ∙ 1) = (17,6),

i.e., n = 8, x = 6, or 8 houses; the desired one is 
the 6th one. Next, applying bhāvanā on the pairs 
(17,6) and (3,1), I get the solution

(17 ∙ 3 + 8 ∙ 6 ∙ 1, 17 ∙ 1 + 6 ∙ 3) = (99, 35),

i.e., n = 49, x = 35, or 49 houses; the desired one 
is the 35th one. Thus I generate infinitely many 
solutions of y2 – 8x2 = 1 and find the answer 
according to the specified range of n. Some pairs 
of solutions obtained in this manner and the 
corresponding values of n are listed in the table 
below.

y = 2n + 1
x (desired Door 

Number)
n (no. of houses)

3 1 1
17 6 8
99 35 49
577 204 288

The Strand Magazine problem states that 50 ≤ n 
≤ 500, hence n = 288, x = 204. So there are 288 
houses, and the desired house number is 204.

Note from the editors: Another method for 
solving this problem has been described in the 
article on Ramanujan by Utpal Mukhopadhyay, 
elsewhere in this issue.
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 Varga Prakriti refers to the second-degree indeterminate equation in two 
variables, 𝑦𝑦2 − 𝑁𝑁 𝑥𝑥2 = 1, which must be solved over the positive integers. Here 

𝑁𝑁 is an arbitrary positive integer. For example, the equation that arises in the 
door number problem is 𝑦𝑦2 − 8𝑥𝑥2 = 1. 

 
Literally, Varga Prakriti means ‘equation of the multiplied square’; Varga means 

‘coefficient’ and refers to the number 𝑁𝑁 in the equation 𝑦𝑦2 − 𝑁𝑁 𝑥𝑥2 = 1. 
 

The equation is better known as the ‘Pell equation’ (after John Pell, a 17th 
century English scholar), but the name is now known to be a historical inaccuracy. 

These equations were first studied in detail by Brahmagupta in the 6th century 
CE, and later by Bhaskaracharya II (who developed a so-called ‘Chakravala’ or 

cyclic method of solution) and others. A more appropriate name for the equation 
would therefore be the Brahmagupta-Bhaskara equation. 

 
For more on this topic, the reader is directed to the following excellent reference 

material which we have used freely:  
http://www-groups.dcs.st-

and.ac.uk/history/Miscellaneous/Pearce/Lectures/Ch8_6.html 
 

Box 1: Varga Prakriti 

Vargaprakriti
Vargaprakriti refers to the second-degree indeterminate equation in two variables, y 

2 – Nx 
2 = 1, which 

must be solved over the positive integers. Here N is an arbitrary positive integer. For example, the 
equation that arises in the door number problem is y 

2 – 8x 
2 = 1.

Literally, Vargaprakriti means ‘equation of the multiplied square’; Varga means ‘coefficient’ and 
refers to the number N in the equation y 

2 – Nx 
2 = 1.

The equation is better known as the ‘Pell equation’ (after John Pell, a 17th century English scholar), 
but the name is now known to be a historical inaccuracy. These equations were first studied in detail 
by Brahmagupta in the 6th century CE, and later by Bhaskaracharya II (who developed a so-called 
‘Chakravala’ or cyclic method of solution) and others. A more appropriate name for the equation 
would therefore be the Brahmagupta-Bhaskara equation.

For more on this topic, the reader is directed to the following excellent reference material which we have 
used freely: http://www-groups.dcs.st-and.ac.uk/history/Miscellaneous/Pearce/Lectures/Ch8_6.html


