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Claim: Let a, b be natural numbers. If we plot the point (a, b) on 
a square grid and draw the line joining (0, 0) to (a, b), then the 
GCD of a and b is given by the number of grid points on this line 
decreased by 1.

Using Co-Ordinate Geometry to find 

the GCD and LCM of 
TWO NUMBERS a & b

Figure 1.
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Illustration: Find the GCD of 4 and 6.

Figure 2

•  Represent point A (4, 6) in the sheet.

•  Construct line segmentOA whose end points 
are O (0, 0) and A (4, 6).

•  Find the number of lattice points onOA . 
Here, the number is 3.

• GCD = number of lattice points – 1 = 3 – 1 = 2.

Thus, GCD of 4 and 6 is 2.

Claim: In Figure 1, choose the lattice point  
O (0, 0) and the lattice points next to it on 
the same line, say, A1, construct the rectangle 
OPA1Q, and then find the number of squares 
contained in the rectangle OPA1Q. Then:

LCM (a, b) = GCD (a, b) × number of squares 
contained in Rectangle OPA1Q.

Illustration: Find the LCM of 4 and 6
•  In Figure 2, choose lattice point O (0, 0) and 

the ‘next’ lattice point, A1. 

•  Construct rectangle OPA1Q. Find the number 
of squares in OPA1Q.

•  The LCM can be found with the help of the 
following formula

LCM = GCD × number of squares contained in 
rectangle OPA1Q = 2 × 6 =12.

Explanation
1. Consider point A (a, b) in the sheet (Figure 1). 

Write the equation of OA


as follows.


:
b

OA y x
a

∴ =

If k is a common divisor of a and b, then a kα=  
and b kβ=  for some positive integers  and .α β

If we substitute x α=  in the equation of OA


, we 
get y β=  and hence point ( )1 ,A α β is on line 
segment OA . 

The equation of OA


 can therefore be simplified 

to β
α

= .y x

We see that y has an integer solution only if x is a 
multiple of α.

Now 0 x a≤ ≤ , therefore 0 x kα≤ ≤ . There are  
k + 1 multiples of α starting with 0 and ending 
with .kα
∴ Number of lattice points = k + 1

∴ k = number of lattice points – 1

∴ GCD (a,b) = number of lattice points – 1

2. Now LCM (a,b) = LCM ( )α β⋅ ⋅k ,  k

∴ LCM (a,b) = k ∙ LCM ( ),  where   andα β α β  
are relatively prime.

( )LCM a,b =k αβ∴ ⋅

∴ LCM (a,b) = GCD (a,b) × Area of rectangle 
OPA1Q.

∴ LCM (a,b) = GCD (a,b) × number of 
squares in rectangle OPA1Q.
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If 𝑘𝑘 is a common divisor of 𝑎𝑎 and 𝑏𝑏, then 𝑎𝑎 = 𝑘𝑘𝑘𝑘 and 𝑏𝑏 = 𝑘𝑘𝑘𝑘 for some positive integers 
𝑘𝑘 and 𝑘𝑘.  

If we substitute 𝑥𝑥 = 𝑘𝑘 in the equation of 𝑂𝑂𝑂𝑂 ⃡    , we get 𝑦𝑦 = 𝑘𝑘 and hence point 𝑂𝑂1(𝑘𝑘,𝑘𝑘) is on 
line segment 𝑂𝑂𝑂𝑂̅̅ ̅̅ .  

The equation of 𝑂𝑂𝑂𝑂 ⃡     can therefore be simplified to 𝒚𝒚 = 𝜷𝜷
𝜶𝜶 𝒙𝒙. 

We see that 𝑦𝑦 has an integer solution only if 𝑥𝑥 is a multiple of α. 

Now 0 ≤ 𝑥𝑥 ≤ 𝑎𝑎, therefore 0 ≤ 𝑥𝑥 ≤ 𝑘𝑘𝑘𝑘. There are 𝑘𝑘 + 1 multiples of 𝑘𝑘 between 0 and 𝑘𝑘𝑘𝑘. 

∴ Number of lattice points = k + 1 
∴ k = number of lattice points – 1 
∴ GCD (a,b) = number of lattice points – 1 
 

2. Now LCM (a,b) = LCM (k∙ 𝑘𝑘, k∙ 𝑘𝑘) 
∴ LCM (a,b) = k ∙ LCM (𝑘𝑘, 𝑘𝑘) Where 𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 are relatively prime. 

∴ LCM (a,b) = k ∙ 𝑘𝑘𝑘𝑘 

∴ LCM (a,b) = GCD (a,b) × Area of rectangle 𝑶𝑶𝑶𝑶𝑨𝑨𝟏𝟏𝑸𝑸 

∴ LCM (a,b) = GCD (a,b) × number of squares in rectangle 𝑶𝑶𝑶𝑶𝑨𝑨𝟏𝟏𝑸𝑸. 
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