Using Co-Ordinate Geometry to find the GCD and LCM of TWO NUMBERS *a* & *b*

TEJASH PATEL

Figure 1.

Claim: Let a, b be natural numbers. If we plot the point (a, b) on a square grid and draw the line joining (0, 0) to (a, b), then the GCD of a and b is given by the number of grid points on this line decreased by 1.

Keywords: Natural Numbers, LCM, HCF, Coordinate Geometry, Lattice Points, Visualization, Representation

Illustration: Find the GCD of 4 and 6.

- Represent point A (4, 6) in the sheet.
- Construct line segment \overline{OA} whose end points are O (0, 0) and A (4, 6).
- Find the number of lattice points on \overline{OA} . Here, the number is 3.
- GCD = number of lattice points -1 = 3 1 = 2.

Thus, GCD of 4 and 6 is 2.

Claim: In Figure 1, choose the lattice point O(0, 0) and the lattice points next to it on the same line, say, A_1 , construct the rectangle OPA_1Q , and then find the number of squares contained in the rectangle OPA_1Q . Then:

LCM $(a, b) = \text{GCD}(a, b) \times \text{number of squares}$ contained in Rectangle OPA₁Q.

Illustration: Find the LCM of 4 and 6

• In Figure 2, choose lattice point O (0, 0) and the 'next' lattice point, *A*₁.

- Construct rectangle *OPA*₁*Q*. Find the number of squares in *OPA*₁*Q*.
- The LCM can be found with the help of the following formula

LCM = GCD × number of squares contained in rectangle $OPA_1Q = 2 \times 6 = 12$.

Explanation

1. Consider point A (*a*, *b*) in the sheet (Figure 1). Write the equation of \overrightarrow{OA} as follows.

$$\therefore \overrightarrow{OA} : y = \frac{b}{a}x$$

If k is a common divisor of a and b, then $a = k\alpha$ and $b = k\beta$ for some positive integers α and β .

If we substitute $x = \alpha$ in the equation of \overrightarrow{OA} , we get $y = \beta$ and hence point $A_1(\alpha, \beta)$ is on line segment \overrightarrow{OA} .

The equation of \overrightarrow{OA} can therefore be simplified to $\mathbf{y} = \frac{\beta}{\alpha} \mathbf{x}$.

We see that y has an integer solution only if x is a multiple of α .

Now $0 \le x \le a$, therefore $0 \le x \le k\alpha$. There are k + 1 multiples of α starting with 0 and ending with $k\alpha$.

- \therefore Number of lattice points = k + 1
- \therefore k = number of lattice points 1
- \therefore GCD (*a*, *b*) = number of lattice points 1
- 2. Now LCM $(a, b) = LCM(\mathbf{k} \cdot \boldsymbol{\alpha}, \mathbf{k} \cdot \boldsymbol{\beta})$

 $\therefore \text{LCM } (a,b) = k \cdot \text{LCM}(\alpha,\beta) \text{ where } \alpha \text{ and } \beta$ are relatively prime.

 \therefore LCM(a,b)=k $\cdot \alpha \beta$

 \therefore LCM (a,b) = GCD (a,b) × Area of rectangle *OPA*₁*Q*.

: LCM $(a,b) = GCD(a,b) \times number of squares in rectangle$ *OPA*₁*Q*.

TEJASH PATEL is from Patan in Gujarat. He teaches in Chanasma Primary School No. 2. He has an M.Sc in Mathematics and a B.Ed. His interests are in Coordinate Geometry and Statistics. At present, he is working towards a post graduate diploma in Applied Statistics from IGNOU. He may be contacted at tejash_82@yahoo.com.