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INEQUALITIES in 
Algebra and Geometry

This article is the fourth in the 
‘Inequalities’ series. This time, 
we present a novel proof of the 
general AM-GM inequality, 
based on iteration. Following 
this, we present some applications 
of the inequality.

The arithmetic mean-geometric mean inequality
(generally referred to as the AM-GM inequality; said
to be part of the daily diet for aspiring mathletes,

and routinely used in many branches of mathematics) is
well-known. New proofs come up once in a while. The
following iterative proof is highly unusual and will be of
interest to some readers.

Statement of the theorem
The arithmetic mean A and the geometric mean G of n given
positive numbers a1, a2, . . . , an are defined as follows:

A =
a1 + a2 + · · ·+ an

n
=

n∑
i=1

ai

n
, (1)

G = (a1a2 · · · an)1/n =
(

n∏
i=1

ai

)1/n

. (2)

Theorem (AM-GM inequality). Let a1, a2, . . . , an be positive
numbers with arithmetic mean A and geometric mean G. Then
A ≥ G. Moreover, the equality A = G holds if and only if
a1 = a2 = · · · = an.

Proof of the theorem
For convenience, we use the short forms AM for arithmetic
mean and GM for geometric mean.

We assume for convenience that the ai’s are indexed in
increasing order, so that a1 ≤ a2 ≤ · · · ≤ an; this implies
that a1 ≤ A ≤ an. If a1 = A or an = A, then it means that
all the ai’s are equal. In this case we have A = G, so there is
nothing to prove; so we may assume that a1 < A < an. Note
that in this case, the quantity X = a1 + an − A is positive.
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We now replace the numbers a1 and an by A and X, respectively. The n numbers we now have are:
A, a2, a3, . . . , an−1, X. The AM of these numbers is exactly the same as that of the numbers in the earlier
list, because A+ X = a1 + an. However, their GM is strictly greater than the earlier value, because A and
X lie strictly between a1 and an (i.e., a1 < A, X < an), implying that AX > a1an. To see why, observe that
the inequality AX > a1an is equivalent to

A (a1 + an − A)− a1an > 0,

i.e., to
(A− a1)(an − A) > 0,

and this is clearly true since a1 < A < an.

So the replacement preserves the AM but results in an increased value for the GM.

The procedure is now iterated: at each stage, we replace the least and greatest numbers in the latest list by
the AM of the collection and the value of

least number+ greatest number− AM,

respectively, and we continue this as long as the numbers in the collection are not all equal.

After each iteration we obtain a list of numbers in which the number of entries equal to A has increased.
Therefore, after no more than n− 1 iterations we reach a stage when all entries are equal to A. So the
iteration definitely comes to an end after a finite number of steps.

Let Gi represent the geometric mean at the i-th stage; then G0 = G and

A = Gn−1 ≥ Gn−2 ≥ · · · ≥ G1 ≥ G0 = G,

so A ≥ G, as required. �

An example using numbers. It helps if we show the working of the algorithm using actual numbers. Let
us start with the list 1, 2, 3, 4, 10 and see what the algorithm accomplishes.

We display the working in the form of a table as shown below. In the second column, we always display
the list in sorted form, i.e., in non-decreasing order.

Step Latest list Min element Max element AM X GM

1 1, 2, 3, 4, 10 1 10 4 7 2401/5

2 2, 3, 4, 4, 7 2 7 4 5 6721/5

3 3, 4, 4, 4, 5 3 5 4 4 9601/5

4 4, 4, 4, 4, 4 4 4 4 4 10241/5

Observe the steady increase in the values of the GM, while the AM stays fixed. At the end, when all the
numbers are equal, we have AM = GM.

Some applications of the AM-GM inequality
In this section, we invert the usual procedure. Rather than start with a problem from some Olympiad
collection or the other, we try to create interesting inequalities by applying the AM-GM inequality to
various lists of numbers. It can become quite a nice game to play! Here are some inequalities that we
obtain as a result.
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Result 1: Start with the list of numbers 1, 2, . . . , n, where n is any positive integer (n > 1). Their
arithmetic mean is

1+ 2+ · · ·+ n
n

=
n(n+ 1)

2
× 1

n
=

n+ 1
2

,

and their geometric mean is

(1× 2× · · · × n)1/n = (n! )1/n .

It follows that
(n! )1/n <

n+ 1
2

. (3)

The inequality is strict, since the numbers in the list 1, 2, . . . , n are not all equal (indeed, they
are all unequal).

Result 2: Start with the list of n numbers 1, 1, . . . , 1, 2, with (n− 1) repetitions of 1 and a solitary 2;
here n is any positive integer (n > 1). Their arithmetic mean is

1
n


1+ 1+ · · ·+ 1︸ ︷︷ ︸

n−1 repetitions

+2


 =

n+ 1
n

= 1+
1
n
,

and their geometric mean is

(1× 1× · · · × 1× 2)1/n = 21/n.

It follows that
21/n < 1+

1
n
. (4)

The inequality is strict, since the numbers in the list 1, 1, . . . , 1, 2 are not all equal.

Corollary. Here is an interesting result which follows from the above inequality. It is obvious
that 21/n > 1. Hence the following is true for all positive integers n > 1:

1 < 21/n < 1+
1
n
. (5)

In this double inequality, we let n increase without bound (i.e., n → ∞). The number at the
extreme left is a constant (equal to 1), while the numbers at the extreme right tend to 1 (in the
limit). Therefore, by the so-called sandwich principle or pinch principle, the following
statement is true:

lim
n→∞

21/n = 1. (6)

Result 3: Similarly we may prove: for all positive integers n > 1,

1 < 31/n < 1+
2
n
, (7)

and hence:
lim
n→∞

31/n = 1. (8)

Result 4: Now consider of the list 1, 1, . . . , 1, 1+ x, with n− 1 repetitions (n > 1) of 1 and a solitary
1+ x, where x > −1. (This restriction is needed to avoid having a negative value for 1+ x.)
The arithmetic mean of the numbers is

1
n


1+ 1+ · · ·+ 1︸ ︷︷ ︸

n−1 repetitions

+(1+ x)


 =

n+ x
n

= 1+
x
n
,
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and their geometric mean is

(1× 1× · · · × 1× (1+ x))1/n = (1+ x)1/n.

It follows that
(1+ x)1/n ≤ 1+

x
n
. (9)

The inequality is true for all integers n > 1 and for all real numbers x > −1. Equality holds
precisely when x = 0. The inequality is strict provided that x is non-zero.

It is interesting to look at this relation graphically. Figure 1 displays the graphs of the following
two functions for x ≥ −1:

fn(x) = (1+ x)1/n (red),

gn(x) = 1+
x
n

(blue),

for n = 2 and n = 4. Observe that in both cases, the graph of g (shown in blue colour) is a
straight line tangent to the graph of f (shown in red colour) at the point (0, 1). The tangent line
lies entirely above the curve, touching it only at the indicated point.

Result 5: A particularly interesting inequality is obtained by considering the list of n+ 1 numbers:

1, 1+
1
n
, 1+

1
n
, 1+

1
n
, . . . , 1+

1
n
, (10)

where n is any positive integer. (So there are n repetitions of the number 1+ 1
n .) Their

arithmetic mean is
1

n+ 1

(
1+ n · n+ 1

n

)
=

n+ 2
n+ 1

= 1+
1

n+ 1
,

and their geometric mean is (
1+

1
n

)n/(n+1)

.

We therefore get the following inequality which is true for all positive integers n:

1+
1

n+ 1
>

(
1+

1
n

)n/(n+1)

,



79Azim Premji University At Right Angles, March 2018

that is, (
1+

1
n+ 1

)n+1

>

(
1+

1
n

)n

. (11)

This establishes, as a mere corollary, the result that the following sequence

1,
(
1+

1
2

)2

,

(
1+

1
3

)3

,

(
1+

1
4

)4

, . . . , (12)

is strictly increasing. This result is needed in the proof of the claim that the sequence of numbers
(12) has a limit. Some of you may know that the limit is the very well known number e whose
approximate value is 2.71828.

Closing remarks. In the latter part of this article, we have tried to show how one can find mathematical
results on one’s own. This is in fact how mathematics is created! We invite you to find some interesting
inequalities of your own by applying the AM-GM inequality to various lists of numbers.
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