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Observe that the conclusion remains true even if the quadrilateral is not convex and the diagonals meet as
in Figure 1 (b). The same proof works for both figures.

What is more striking is that the proposition has a converse:

Theorem 2. If the two pairs of opposite sides of a quadrilateral have equal sums of squares, then the diagonals of
the quadrilateral are perpendicular to each other.

That is, if AB 2 + CD 2 = AD 2 + BC 2, then AC ⊥ BD. We urge the reader to try proving this before
reading on.

Our proof uses the generalized version of the theorem of Pythagoras: In △ABC, the quantity a 2 is less than,
equal to, or greater than b 2 + c 2, in accordance with whether �A is less than, equal to, or greater than 90◦.

We wish to show that if AB 2 + CD 2 = AD 2 + BC 2, then �AOB = 90◦. Our approach will be to show
that �AOB cannot be either acute or obtuse; this leaves only one possibility, the one we want. (Euclid was
fond of this approach. Several proofs in The Elements are presented in this style. Sherlock Holmes too
was fond of this principle! Holmes enthusiasts will remember his unforgettable sentence, “How often have
I said to you that when you have eliminated the impossible, whatever remains, however improbable, must
be the truth?”) To start with, suppose that �AOB is acute. Then �COD too is acute, and �BOC and
�DOA are obtuse. By the generalized version of the PT, we have:

{
AB 2 < AO 2 + BO 2, CD 2 < CO 2 + DO 2,

AD 2 > AO 2 + DO 2, BC 2 > BO 2 + CO 2.
(2)

By addition we get the following double inequality:

AB 2 + CD 2 < AO 2 + BO 2 + CO 2 + DO 2 < AD 2 + BC 2, (3)

implying that AB 2 + CD 2 < AD 2 + BC 2. This contradicts what we were told at the start: that
AB 2 + CD 2 = AD 2 + BC 2. So our supposition that �AOB is acute must be wrong; �AOB cannot be acute.

If we suppose that �AOB is obtuse, we get AB 2 + CD 2 > AD 2 + BC 2. This too contradicts what we
were told at the start and must be discarded. �AOB cannot be obtuse.

The only possibility left is that �AOB is a right angle; i.e., that AC and BD are perpendicular to each
other. Which is the conclusion we were after. �
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QUADRILATERALS 
with Perpendicular Diagonals

SHAILESH 
SHIRALI In this article, we study a few properties possessed by any

quadrilateral whose diagonals are perpendicular to each
other. A four-sided figure possessing such a property is

known as an ortho-diagonal quadrilateral. Many special
four-sided shapes with which we are familiar have this
property: squares, rhombuses (where all four sides have equal
length) and kites (where two pairs of adjacent sides have
equal lengths). It may come as a surprise to the reader to find
that such a simple requirement (diagonals perpendicular to
each other) can lead to so many elementary and pleasing
properties.

First Property: Sums of squares of opposite sides
Theorem 1. If the diagonals of a quadrilateral are
perpendicular to each other, then the two pairs of opposite sides
have equal sums of squares.

Let the quadrilateral be named ABCD. (See Figure 1.) Then
the theorem asserts the following: If AC ⊥ BD, then
AB 2 + CD 2 = AD 2 + BC 2. Here is a proof. Denoting by
O the point where AC meets BD, we have, by the
Pythagorean theorem:

{
AB 2 = AO 2 + BO 2, CD 2 = CO 2 + DO 2,

AD 2 = AO 2 + DO 2, BC 2 = BO 2 + CO 2,
(1)

and we see that

AB 2+CD 2 = AO 2+BO 2+CO 2+DO 2 = AD 2+BC 2. �
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Third Property: Midpoint rectangle
This property will not come as a surprise to students in classes 9 and 10, who will be familiar with the
midpoint theorem for triangles. It is illustrated in Figure 3.

Given a quadrilateral ABCD, let the midpoints of its sides AB, BC,CD,DA be E, F,G,H respectively.
Then, by the Midpoint Theorem, segments EF and HG are parallel to diagonal AC, and segments FG and
EH are parallel to diagonal BD. Hence the quadrilateral EFGH is a parallelogram; it is called the
midpoint parallelogram of ABCD. (This result by itself is known as Varignon’s Theorem. It is true for
any quadrilateral.) Hence, if the diagonals of ABCD are perpendicular to each other, all the angles of
EFGH are right angles. This yields Theorem 3.

Theorem 3. If the diagonals of the quadrilateral are perpendicular to each other, then its midpoint
parallelogram is a rectangle.

As earlier, the result remains true if the quadrilateral is non-convex, as in Figure 3 (b). The midpoint
parallelogram may now be called the midpoint rectangle.

The converse of Theorem 3 is also true, namely:

Theorem 4. If the midpoint parallelogram of a quadrilateral is a rectangle, then the diagonals of the
quadrilateral are perpendicular to each other.

We omit the proof, which is quite easy.

Fourth Property: Midpoint Circle
A rectangle is a special case of a cyclic quadrilateral. Hence, for any quadrilateral whose diagonals are
perpendicular to each other, there exists a circle which passes through the midpoints of its four sides. Now
a line which intersects a circle must do so again at a second point (possibly coincident with the first point
of intersection, which would be a case of tangency). So the midpoint circle must intersect each of the four
sidelines again, giving rise to four special points; see Figure 4. What are these points?

Figure 4 depicts the situation. The midpoint of the sides are E, F,G,H respectively, and circle (EFGH)
intersects the four sides at points I, J,K, L. (It so happens that in this particular figure, L has coincided
with H. However, this will obviously not happen in general.) Since the line segments EG and FH (which
are diagonals of the rectangle EFGH) are diameters of the circle, it follows that I is the foot of the
perpendicular from G to line AB; J is the foot of the perpendicular from H to line BC; K is the foot of the
perpendicular from E to line CD; and L is the foot of the perpendicular from F to line DA. (This follows
from the theorem of Thales: “the angle in a semicircle is a right angle.”) So we have now identified what
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Figure 2. A pair of jointed quadrilaterals with the same side lengths

A proof using vectors. Students of classes 11 and 12 may be interested in seeing that there is a vector
proof of Theorems 1 and 2; both theorems are proved at the same time.

Given a quadrilateral ABCD, we denote the vectors AB, BC, CD by a, b, c respectively; then
AD = a+ b+ c. We now have:

AB 2 = a · a, BC 2 = b · b, CD 2 = c · c, (4)

AD 2 = (a+ b+ c) · (a+ b+ c)

= a · a+ b · b+ c · c+ 2(a · b+ a · c+ b · c). (5)

Hence:

AD 2 + BC 2 − AB 2 − CD 2 = 2(b · b+ a · b+ a · c+ b · c)

= 2(a+ b) · (b+ c) = 2AC · BD. (6)

Hence AD 2 + BC 2 − AB 2 − CD 2 = 0 if and only if AC ⊥ BD. �

Second Property: Rigidity
Theorem 2 has a pretty consequence related to the notion of rigidity of a polygon.

We know that a triangle is rigid: given three lengths which satisfy the triangle inequality (i.e., the largest
length is less than the sum of the other two lengths), there is just one triangle having those lengths for its
sides. So its shape cannot change. If we make a triangle using rods for sides, joined together at their ends
using nuts and bolts, the structure is rigid and stable; it will not lose shape when subjected to pressure.

But a quadrilateral made this way is not rigid; if at all one can make a quadrilateral using four given
lengths as its sides (this requires that the largest length is less than the sum of the other three lengths), one
can ‘push’ it inwards or ‘pull’ it outwards and so deform its shape. There are thus infinitely many distinct
quadrilaterals that share the same side lengths. Figure 2 illustrates this property.

Now let a ‘jointed quadrilateral’ be formed in this manner using four given rods. Then, as just noted, we
can deform its shape by applying pressure at the ends of a diagonal, inward or outward. Suppose it happens
that in some position the diagonals of the quadrilateral are perpendicular to each other. Then this property is
never lost, no matter how we deform the quadrilateral. The diagonals always remain perpendicular to each other.
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Sixth Property: Area
We conclude this article with a discussion concerning the area of a quadrilateral. We examine the
following question: If we know the four sides of a quadrilateral and the angle between its two diagonals, can
we find the area of the quadrilateral? We shall show that the answer in general is ‘Yes.’ But it is not an
unqualified Yes!—there is an unexpected twist in the tale.

Let the quadrilateral be named ABCD, let the sides AB, BC,CD,DA have lengths a, b, c, d respectively, let
the point of intersection of the diagonals AC and BD be O, and let it be specified that the angle between
the diagonals has measure θ. We need to find a formula for the area k in terms of a, b, c, d, θ. Using the
sine formula for the area of a triangle, it is easy to show that the area of the quadrilateral is

k =
1
2

AC × BD × sin θ. (7)

We had shown in Section I that AD 2 + BC 2 − AB 2 − CD 2 = 2AC · BD, i.e.,∣∣AD 2 + BC 2 − AB 2 − CD 2∣∣ = 2 AC × BD × |cos θ| . (8)
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the four new points are: they are the feet of the perpendiculars drawn from the midpoints of the sides to
the opposite sides. The circle passing through these eight points is referred to as the eight-point circle of
the quadrilateral (in analogy with the much better-known nine point circle of a triangle).

These four perpendiculars we have drawn (from the midpoints of the sides to the opposite sides) are called
the maltitudes of the quadrilateral. Clearly, this construction can be done for any quadrilateral. The
theorem enunciated above can now be written in a stronger form:

Theorem 5. If the diagonals of the quadrilateral are perpendicular to each other, then the midpoints of the four
sides and the feet of the four maltitudes lie on a single circle.

The converse of this statement is also true:

Theorem 6. If the midpoints of the four sides and the feet of the four maltitudes lie on a single circle, then the
diagonals of the quadrilateral are perpendicular to each other.

Fifth Property: Brahmagupta’s theorem
In this section, we study an interesting property of a cyclic quadrilateral whose diagonals are perpendicular
to each other; thus, we have imposed an additional property on the quadrilateral, namely, that it is cyclic.
The property in question was first pointed out by the Indian mathematician Brahmagupta (seventh
century AD).

Figure 5 depicts the property. The cyclic quadrilateral in question is ABCD; its diagonals AC and BD are
perpendicular to each other. The midpoints of its sides are E, F,G,H, and EFGH is a rectangle. The circle
through E, F,G,H intersects the four sides again at points I, J,K, L respectively. If we draw the segments
EK, FL,GI,HJ respectively, we find that they all pass through the point of intersection of AC and BD. So
we have six different segments passing through a common point. Not only that, but we also have
EK ⊥ CD, FL ⊥ DA, GI ⊥ AB and HJ ⊥ BC! Indeed a beautiful result. We state the result formally as a
theorem (see [3]):

Theorem 7 (Brahmagupta). If a quadrilateral is both cyclic and ortho-diagonal, then the perpendicular to a
side from the point of intersection of the diagonals bisects the opposite side.
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(We have used absolute value signs here as the signs do not matter any longer at this stage; we are only
interested in the absolute magnitudes.) Hence:

AC × BD =
|AD 2 + BC 2 − AB 2 − CD 2|

2 |cos θ|
. (9)

This yields the desired formula for the area of the quadrilateral:

k =
|AD 2 + BC 2 − AB 2 − CD 2| × |tan θ|

4
. (10)

At this point, we uncover something quite fascinating. Suppose the quadrilateral in question is of the type
studied here; i.e., its diagonals are perpendicular to each other. Then in the above formula, we encounter
an indeterminate form! For, in the numerator, when θ = 90◦, we see the product 0 ×∞. Examining the
situation geometrically, we realise that this is not just a numerical quirk; the area really cannot be
determined!

The comments made in Section II should make this clear; we pointed out that a quadrilateral is not rigid;
but that as it changes shape, the property that its diagonals are perpendicular to each other is invariant. If
the property is true in one particular configuration, it always remains true. We see directly in this situation
that the area can assume a whole continuum of values, implying that it is indeterminate.

The case of a kite. Figure 7 displays a particular case of this which is easy to grasp: when adjacent pairs of
sides have equal length (i.e., the figure is a kite).
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Figures ABCD and A′B′C′D′ (which are kites, with AD = CD = A′D′ = C′D′ and
AB = BC = A′B′ = B′C′) have unequal area. By further squashing the kite along the vertical diagonal, we
can make its area as small as we wish. The limiting case in this direction would be that of a degenerate
quadrilateral, i.e., one with zero area.

The case of a rhombus. As noted in [2], the phenomenon described above may be visualized still more
easily in the case of a rhombus. Let the rhombus have side a, and let its angles be α and 180◦ − α where
0◦ < α ≤ 90◦ (see Figure 8). Then the area of the rhombus is equal to a 2 sin α.

Since α can assume any value between 0◦ and 90◦, it follows that the area of the rhombus can assume any
value between 0 and a 2.
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(We have used absolute value signs here as the signs do not matter any longer at this stage; we are only
interested in the absolute magnitudes.) Hence:

AC × BD =
|AD 2 + BC 2 − AB 2 − CD 2|

2 |cos θ|
. (9)

This yields the desired formula for the area of the quadrilateral:

k =
|AD 2 + BC 2 − AB 2 − CD 2| × |tan θ|

4
. (10)

At this point, we uncover something quite fascinating. Suppose the quadrilateral in question is of the type
studied here; i.e., its diagonals are perpendicular to each other. Then in the above formula, we encounter
an indeterminate form! For, in the numerator, when θ = 90◦, we see the product 0 ×∞. Examining the
situation geometrically, we realise that this is not just a numerical quirk; the area really cannot be
determined!

The comments made in Section II should make this clear; we pointed out that a quadrilateral is not rigid;
but that as it changes shape, the property that its diagonals are perpendicular to each other is invariant. If
the property is true in one particular configuration, it always remains true. We see directly in this situation
that the area can assume a whole continuum of values, implying that it is indeterminate.

The case of a kite. Figure 7 displays a particular case of this which is easy to grasp: when adjacent pairs of
sides have equal length (i.e., the figure is a kite).
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Figure 7

Figures ABCD and A′B′C′D′ (which are kites, with AD = CD = A′D′ = C′D′ and
AB = BC = A′B′ = B′C′) have unequal area. By further squashing the kite along the vertical diagonal, we
can make its area as small as we wish. The limiting case in this direction would be that of a degenerate
quadrilateral, i.e., one with zero area.

The case of a rhombus. As noted in [2], the phenomenon described above may be visualized still more
easily in the case of a rhombus. Let the rhombus have side a, and let its angles be α and 180◦ − α where
0◦ < α ≤ 90◦ (see Figure 8). Then the area of the rhombus is equal to a 2 sin α.

Since α can assume any value between 0◦ and 90◦, it follows that the area of the rhombus can assume any
value between 0 and a 2.


