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HANEET GANDHI In my earlier two articles on Tessellations – Covering  the 
Plane with Repeated Patterns Parts I and II – which appeared 
in At Right Angles (March 2014 and July 2014), I tried to 

provide a glimpse into the topic of recognizing regular polygons 
that can tessellate. In an accompanying article, Enumeration 
of Semi-regular Tessellations (AtRiA, March 2014), the authors 
arithmetically enumerated the combinations of regular polygons 
whose interior angles could fit together to make a complete angle 
(i.e., 360°); 17 such combinations were listed. However, not 
all of these tessellate. The present article may be viewed as an 
extension of the earlier ones; I have tried to identify and shortlist 
the combinations that extend to create semi-regular tiling 
patterns. (Note from the editor: See the glossary at the end of the 
article for explanations of terms with which you may not be familiar. 
Some potentially unfamiliar terms have been highlighted for you.)

METHOD IN MADNESS 

CATALOGUING 1-UNIFORM TILINGS 
Haneet Gandhi 

Keywords: tessellation, tiling, enumeration, regular polygon, edge-to-edge tessellation, regular tessellation, 
semi-regular tessellation, demi-regular tessellation, Archimedean tessellation 

In my earlier two articles on Tessellations – Covering  the Plane with Repeated Patterns 
Parts I and II – which appeared in At Right Angles (March 2014 and July 2014), I tried to 
provide a glimpse into the topic of recognizing regular polygons that can tessellate. In an 
accompanying article, Enumeration of Semi-regular Tessellations (AtRiA, March 2014), the 
authors arithmetically enumerated the combinations of regular polygons whose interior 
angles could fit together to make a complete angle (i.e., 360°); 17 such combinations were 
listed. However, not all of these tessellate. The present article may be viewed as an extension 
of the earlier ones; I have tried to identify and shortlist the combinations that extend to create 
semi-regular tiling patterns. (Note from the editor: See the glossary at the end of the article 
for explanations of terms with which you may not be familiar. Some potentially unfamiliar 
terms have been highlighted for you.) 
 

Code Number of faces Code Number of faces 
 n1 n2 n3 n4 n5 n6  n1 n2 n3 n4 n5 n6 

A 3 7 42    K 6 6 6    
B 3 8 24    L 3 3 4 12   
C 3 9 18    M 3 3 6 6   
D 3 10 15    N 3 4 4 6   
E 3 12 12    P 4 4 4    
F 4 5 20    Q 3 3 3 4 4  
G 4 6 12    R 3 3 3 3 6  
H 4 8 8    S 3 3 3 3 3 3 
J 5 5 10           

Table 1: The 17 combinations 
 
Enumeration of tiling patterns has been sporadic. The credit for categorizing tessellations 
goes to Johannes Kepler. In Book II of Harmonices Mundi (1619), Kepler enumerated 
tessellations which have the property that the way in which the polygons are arranged around 
each vertex is the same for all vertices; tessellations with this property are called 1-uniform 
vertex-homogeneous tilings. Subsequently, Krotenheerdt, Chavey and Galebach succeeded 
in cataloguing tessellations in which there are 𝑘𝑘𝑘𝑘 different patterns used. Tessellations with 
this property are called 𝒌𝒌𝒌𝒌-uniform (𝒌𝒌𝒌𝒌 ≥  𝟐𝟐𝟐𝟐) vertex tilings. (See references [1], [2] and [3].) 
 

Table 1: The 17 combinations
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Enumeration of tiling patterns has been sporadic. The credit for categorizing tessellations goes to Johannes 
Kepler. In Book II of Harmonices Mundi (1619), Kepler enumerated tessellations which have the property 
that the way in which the polygons are arranged around each vertex is the same for all vertices; tessellations 
with this property are called 1-uniform vertex-homogeneous tilings. Subsequently, Krotenheerdt, Chavey 
and Galebach succeeded in cataloguing tessellations in which there is more than one vertex-homogeneity 
in the pattern. In other words, they systematised tessellations that have k kinds of vertices in the pattern.  
Tessellations with this property are called k-uniform (k ≥ 2) vertex tilings. (See references [1], [2] and [3].)

An edge-to-edge tessellating pattern is one in which two polygons which touch each other do so along 
complete edges. An immediate consequence of this requirement is that the edge lengths of all polygons in 
the pattern are the same. Figure 1a shows an example of such a pattern, and Figure 1b shows an example of 
a tessellating pattern which is not edge-to-edge. In this article, we consider only tessellating patterns which 
are edge-to-edge.

Edge-to-edge tessellating patterns which also maintain vertex-homogeneity have been classified as regular, 
semi-regular and demi-regular. In regular tessellations and semi-regular tessellations, there is a single 
uniform vertex configuration all through the pattern (such tilings are also called 1-uniform Archimedean 
tilings), whereas in a demi-regular tessellation there are two or more vertex configurations. In other words, 
tessellations in which a combination of two or more polygons repeat to cover a plane are termed as semi-
regular, and patterns in which two or more vertex configurations co-exist are termed as demi-regular. (Note: 
Some mathematicians define a demi-regular tessellation as a combination of semi-regular tessellations.) 
Though there does not exist much consensus on the number of demi-regular tessellations, we are confident 
that there are only three regular tessellations and only eight semi-regular tessellations. In this article, we 
study the eight configurations that give rise to semi-regular tessellations. The ideas presented in this article 
can be extended for identifying, constructing and cataloguing demi-regular tessellations.

The first category of 1-uniform vertex tessellation is that of regular tessellations, in which the component 
polygons all have the same number of edges. Combinations K, P and S (Table 1) make regular tessellations 
(see Figure 2).

An edge-to-edge tessellating pattern is one in which two polygons which touch each other do 
so along complete edges. An immediate consequence of this requirement is that the edge 
lengths of all polygons in the pattern are the same. Figure 1a shows an example of such a 
pattern, and Figure 1b shows an example of a tessellating pattern which is not edge-to-edge. 
In this article, we consider only tessellating patterns which are edge-to-edge. 
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To catalogue semi-regular tessellations, let us work with the remaining 14 combinations in Table 1. 
Through the enumeration process we had found all combinations of polygons that meet to form 360° at 
a vertex. It so happens that this process conveys little about the actual space fitting of the polygons. For 
example, the lexicon 3.3.3.4.4 only tells us that three equilateral triangles and two squares join together to 
complete the vertex. It does not, however, convey any information about the spatial arrangement of these 
triangles and squares. Would the three triangles come together as 3.3.3.4.4, or would they alternate as 
3.4.3.3.4? Will both the arrangements tessellate? Will these make 1-uniform vertex tessellations?

Three Regular Polygons at a Vertex 
Let us start with a combination of three polygons of which one is a regular 
triangle: 3.A.B. In this lexicon, 3 refers to a regular triangle, A and B are regular 
polygons with A sides and B sides, respectively. The edge lengths of all the 
polygons are the same. To maintain a uniform vertex-homogeneity, the triangle 
must have the same spatial configuration of polygons at all its three vertices; 
i.e., they must be ‘surrounded’ by polygons in the same manner.

In the above representation, polygons A and B meet to complete the blue 
vertex. However, the white vertices will get completed only when the 
polygon at ‘?’ is either A or B. The only way to do this is by setting A = B; 
so the pattern becomes 3.A.A. This eliminates combinations 3.7.42, 3.8.24, 
3.9.18 and 3.10.15. Thus there exists only one combination, E (3.12.12), 
that extends to make 1-uniform vertex tessellation.

The same argument holds for all odd sided polygons incident to two other 
regular polygons. This eliminates F (4.5.20, read it as 5.20.4) and J (5.5.10).

With a four-sided regular polygon, incidental to two other regular polygons, 
the configuration would be 4.A.B. Figures 6a and 6b explain that there can 
be only two ways in which 4.A.B would extend while maintaining single vertex-homogeneity in the plane – 
either A is equal to B or A and B are placed alternately. This qualifies H (4.8.8) and G (4.6.12).
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Summarizing, there can be only three 1-uniform vertex Archimedean tessellations of three regular polygons 
meeting at a vertex, and these are 3.12.12, 4.8.8 and 4.6.12 (see Figure 7).

Four Polygons 
Let the tessellation have two triangles and two other polygons: 3.3.A.B. These polygons can be arranged 
as 3.3.A.B or 3.A.3.B. Let us begin by placing polygons A and B at the top blue vertex (Figure 8a). The 
polygons read in cyclic order would be 3.3.A.B. To have 
the same configuration at the red vertex, the polygons 
must be arranged in counter-clockwise order. At the 
white vertex, however, there will be three triangles 
making the sum total of angles 180o, leaving no 
possibility of fitting any other polygon. Thus, 3.3.A.B 
will not make a semi-regular tessellation. This shows the 
impossibility of both 3.3.4.12 (L) and 3.3.6.6 (M).  

The arrangement 3.A.3.B is depicted in Figure 8b; to 
maintain the same configuration at the white vertex, 
polygons A and B would have to be the same. Thus, two triangles, a square and a dodecagon (L) will not 
tessellate, but the combination M when rearranged as 3.6.3.6 will lead to a 1-uniform vertex tiling Figure 9a.

Similar reasoning leads to the conclusion that for Code N (3.4.4.6), there cannot be a semi-regular 
tessellation. However, if the polygons are rearranged as 3.4.6.4, then as shown in Figure 9b we are able to 
form a semi-regular tessellation.
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Five Polygons 
There are two configurations Q and R of five polygons. We will consider these separately.

The configuration Q makes two arrangements: 3.3.3.4.4 and 3.3.4.3.4. The arrangements in Figure 10a 
and Figure 10b depict schematically how these arrangements partition the plane, maintaining single 
homogeneity of vertices, to create semi-regular tiling patterns.(Figures 11a and 11b respectively)

And finally, Figure 12 depicts the tessellation of R (3.3.3.3.6):

Thus, only 8 of the 14 combinations of regular polygons partition the plane while conforming to 
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Though there is a consensus on the possible number of regular and semi-regular tessellations, there is no 
precise way of concluding the same for demi-regular tessellations. To explore demi-regular tessellations you 
may choose to consider tile-homogeneity or vertex-homogeneity or edge-homogeneity as the criterion for 
listing. Krötenheerdt, 1969 (as stated in Grünbaum and Shephard, 1986) established 124 uniform-vertex 
tessellations on the basis of vertex-homogeneity. Chavey (1984) considered edge-homogeneity to list more 
than 165 demi-regular tessellations. 

In this article we have taken an explorative approach to catalogue semi-regular tessellations. Middle grade 
teachers may let students hunt for tessellations combinatorially as well as geometrically and explore their 
many properties. This work can be extended to identify and catalogue demi-regular tessellations. Including 
such hands-on activities as part of middle grade mathematics teaching provides opportunities to experience 
the interplay of shapes, space, position and symmetry.

Further Reading 
For more about demi-regular classification, readers can refer to the following:
1. Chavey, D.P. (1984). Periodic Tilings and Tilings by Regular Polygons. Unpublished doctoral dissertation submitted at University of 

Wisconsin.   
2. Galebach, B. L. (2002). N-uniform Tilings at http://probabilitysports.com/tilings.html.
3. Grünbaum, B. and Shephard, G.C. (1986). Tiling and Pattern. W.H. Freeman and Company.  New York.
4. www.maa.org/sites/default/files/pdf/upload_library/22/Allendoerfer/1978/0025570x.di021102.02p0230f.pdf
5. www.math.nus.edu.sg/aslaksen/papers/Demiregular.pdf
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Glossary of terms
• 1-uniform vertex-homogeneous tiling: a tessellation in which the way in which the polygons are arranged around each 

vertex is the same for all vertices
• k-uniform (k ≥ 2) vertex tessellation: a tessellation in which there are k different ways in which the polygons are arranged 

around the vertices
• Edge-to-edge tessellating pattern: a tessellation which has the feature that the polygons which touch each other do so 

along complete edges
• Regular tessellation: a tessellation in which the component polygons all have the same number of edges
• Semi-regular tessellation: a tessellation which has two or more kinds of component polygons, but the way in which the 

polygons are arranged around the vertices is the same for all vertices
• Demi-regular tessellation: a tessellation which has two or more kinds of component polygons, but the way in which the 

polygons are arranged around the vertices is not the same for all vertices
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