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the 2nd case) with an acute angle of 60° as shown 
in Figure 8. In the first construction shown, this 
amounts to defining a golden isosceles trapezium 
as an isosceles trapezium ABCD with AD // BC, 
angle ABC = 60°, and the (shorter parallel) side 
AD and ‘leg’ AB in the golden ratio phi.

From the first construction, it follows that triangle 
DXC is equilateral, and therefore XC = a. Hence, 
BC/AD = (phi + 1)/phi, which is well known to 
also equal phi1 . This result together with the 
similarity of isosceles triangles AED and CEB, 
further implies that CE/EA = BE/ED = phi. In 
other words, not only are the parallel sides in the 
golden ratio, but the diagonals also divide each 
other in the golden ratio. Quite nice!

In the second case, however, AD/BC = phi/
(phi – 1) = (phi + 1) = phi squared. Also note in 
the second case, in contrast to the first, it is the 
longer parallel side AD that is in the golden ratio 
to the ‘leg’ AB, and the ‘leg’ AB is in the golden 
ratio with the shorter side BC. So the sides of 
this golden isosceles trapezium form a geometric 
progression from the shortest to the longest side, 
which is quite nice too!

Subdividing the golden isosceles trapezium in the 
first case in Figure 8, like the golden parallelogram 
in Figure 5, by respectively constructing a 
rhombus or two equilateral triangles at the ends, 
clearly does not produce an isosceles trapezium 
similar to the original. In this case the parallel 
sides (longest/shortest) of the obtained isosceles 

trapezium are also in the ratio (phi + 1), and is 
therefore in the shape of the second type in Figure 
8. The rhombus formed by the midpoints of the 
sides of the first golden isosceles trapezium is also 
not any of the previously defined ‘golden’ rhombi.

With reference to the first construction, we could 
define the golden isosceles trapezium without any 
reference to the 60° angle as an isosceles trapezium 
ABCD with AD // BC, and AD/AB = phi = BC/AD 
as shown in Figure 9. 

From the first construction, it follows that triangle DXC is equilateral, and therefore XC = 
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Figure 9: Alternative definition for first golden isosceles trapezium 

However, this is clearly not as convenient a definition as such a choice of definition 

requires again use of the cosine formula to show that it implies that angle ABC = 60° (left 

to the reader to verify). As seen earlier, stating one of the angles and an appropriate 

                                                 
1 Keep in mind that phi is defined as the solution to the quadratic equation phi2 – phi – 1 = 0. From this, it 
follows that phi = (phi + 1)/phi, phi = 1/(phi -1), phi/(phi +1) = phi + 1, or phi2 = phi + 1.  
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However, this is clearly not as convenient a 
definition, as such a choice of definition requires 
again the use of the cosine formula to show 
that it implies that angle ABC = 60° (left to 
the reader to verify). As seen earlier, stating 
one of the angles and an appropriate golden 
ratio of sides or diagonals in the definition, 
substantially simplifies the deductive structure. 
This illustrates the important educational point 
that, generally, we choose our mathematical 
definitions for convenience and one of the criteria 
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Constructively Defining a ‘Golden Kite’
Again there are several possible ways in which 
to constructively define the concept of a ‘golden 
kite’. An easy way of constructing (and defining) 
one might be to again start with a golden triangle 
and construct an equilateral triangle on its base as 
shown in Figure 13. Since AB/BD = phi, it follows 
immediately that since BD = BC by construction, 
AB to BC is also in the golden ratio. Notice that 
the same construction applies to the concave case, 
but is probably not as ‘visually pleasing’ as the 
convex case.

Another way might be again to define the pairs 
of angles in the golden kite to be in the golden 
ratio as shown in Figure 14. Determining x from 
this geometric progression, rounded off to two 
decimals, gives: 

��

x = 360°
1+φ +2φ 2

= 45.84°
   

 

Of special interest is that the angles at B and D 
work out to be precisely equal to 120°. This golden 
kite looks a little ‘fatter’ than the preceding convex 

one, and is therefore perhaps a little more visually 
pleasing. This observation, of course, also relates 
to the ratio of the diagonals, which in the first 
case is 2.40 (rounded off to 2 decimals) while in 
the case in Figure 14, it is 1.84 (rounded off to 
2 decimals), and hence the latter is closer to the 
golden ratio phi.

To define a golden kite that is hopefully even 
more visually appealing than the previous two, I 
next thought of defining a ‘golden kite’ as shown 
in Figure 15, namely, as a (convex3) kite with 
both its sides and diagonals in the golden ratio.

 
Figure 15: Third case: Golden kite with sides and diagonals in the golden ratio 

Though one can drag a dynamically constructed kite in dynamic geometry with sides 

constructed in the golden ratio so that its diagonals are approximately also in the golden 

ratio, making an accurate construction required the calculation of one of the angles. At 

first I again tried to use the cosine rule, since it had proved effective in the case of one 

golden parallelogram as well as one isosceles trapezium case, but with no success. 

Eventually switching strategies, and assuming AB = 1, applying the theorem of 

Pythagoras to the right triangles ABE and ADE gave the following: 



y2  BD 2

4 2
1

BD 2

4 2
 (BD  y)2   2 .

 

Solving for y in the first equation and substituting into the second one gave the following 

equation in terms of BD: 

 



BD 2 2BD 1 BD 2

4 2
1 0. 

This is a complex function involving both a quadratic function as well as a square root 

function of BD. In order to solve this equation, the easiest way as shown in Figure 16 was 

to use my dynamic geometry software (Sketchpad) to quickly graph the function and find 

the solution for x = BD = 2.20 (rounded off to 2 decimals). From there one could easily 

use Pythagoras to determine BE, and use the trigonometric ratios to find all the angles, 

giving, for example, angle BAD = 112.28°. So as expected, this golden kite is slightly 

‘fatter’ and more evenly proportionate than the previous two cases. One could therefore 

argue that it might be visually more pleasing also.  

 

Figure 15. Third case: Golden kite with sides and 
diagonals in the golden ratio

 
Figure 13: First case of golden kite 

 
Figure 14: Second case of golden kite 

Another way might be again to define the pairs of angles in the golden kite to be in the 
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3 For the sake of brevity we shall disregard the concave case here. 

Figure 13. First case of golden kite

Figure 14. Second case of golden kite

1

3 For the sake of brevity we shall disregard the concave case here.
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for ‘convenience’ is the ease by which the other 
properties can be derived from it.

golden ratio of sides or diagonals in the definition, substantially simplifies the deductive 

structure. This illustrates the important educational point that, generally, we choose our 

mathematical definitions for convenience and one of the criteria for ‘convenience’ is the 

ease by which the other properties can be derived from it. 

 
Figure 10: Third golden isosceles trapezium 

Another completely different way to define and conceptualize a golden isosceles 

trapezium is to again use a golden triangle. As shown in Figure 10, by reflecting a golden 

triangle ABC in the perpendicular bisector of one of its ‘legs’ BC, produces a ‘golden 

isosceles trapezium’ where the ratio BC/AB is phi, and the acute ‘base’ angle is 72°. 

Moreover, since angle BAD = 108° and angle ADC = 36°, it follows that angle ABD is 

also 36°. Hence, AD = AB (= DC), and therefore the two parallel sides are also in the 

golden ratio, and as with the preceding case, the diagonals therefore also divide each 

other into the golden ratio. Of interest also is to note that the diagonals AC and DB each 

respectively bisect the ‘base’ angles2 at B and C.  

 
Figure 11: A fourth golden isosceles trapezium 

                                                 
2 In De Villiers (2009, p. 154-155; 207) a general isosceles trapezium with three adjacent sides equal is 
called a trilateral trapezium, and the property that a pair of adjacent, congruent angles are bisected by the 
diagonals is also mentioned. Also see: http://dynamicmathematicslearning.com/quad-tree-new-web.html 
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A fourth way to define and conceptualize a golden 
isosceles trapezium could be to start again with 
a golden triangle ABX, but this time to translate 
it with the vector BX along its ‘base’ to produce 
a golden isosceles trapezium ABCD as shown in 
Figure 11. In this case, since the figure is made 
up of 3 congruent golden triangles, it follows that 
AB/AD = phi, and BC = 2AD (and therefore its 
diagonals also divide each other in the ratio  
2 to 1). 

Though one could maybe argue that the first case 
of a golden isosceles trapezium in Figure 8 is too 
‘broad’ and the one in Figure 11 is too ‘tall’ to be 
visually appealing, there is little visually different 
between the one in Figure 10 and the second case 
in Figure 8. However, all four cases or types have 
interesting mathematical properties, and deserve 
to be known.
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Figure 12: Golden isosceles trapezia of type 3 

One more argument towards perhaps slightly favoring the golden isosceles trapezium, 

defined and constructed in Figure 9, might be that it appears in both the regular convex 
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Figure 12. Golden isosceles trapezia of type 3

One more argument towards perhaps slightly 
favoring the golden isosceles trapezium, defined 
and constructed in Figure 10, might be that it 
appears in both the regular convex pentagon as 
well as the regular star pentagon as illustrated in 
Figure 12.1

2 In De Villiers (2009, p. 154-155; 207) a general isosceles trapezium with three adjacent sides equal is called a trilateral trapezium, and the property 
that a pair of adjacent, congruent angles are bisected by the diagonals is also mentioned. Also see: http://dynamicmathematicslearning.com/quad-
tree-new-web.html
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Constructively Defining a ‘Golden Kite’
Again there are several possible ways in which 
to constructively define the concept of a ‘golden 
kite’. An easy way of constructing (and defining) 
one might be to again start with a golden triangle 
and construct an equilateral triangle on its base as 
shown in Figure 13. Since AB/BD = phi, it follows 
immediately that since BD = BC by construction, 
AB to BC is also in the golden ratio. Notice that 
the same construction applies to the concave case, 
but is probably not as ‘visually pleasing’ as the 
convex case.

Another way might be again to define the pairs 
of angles in the golden kite to be in the golden 
ratio as shown in Figure 14. Determining x from 
this geometric progression, rounded off to two 
decimals, gives: 

��

x = 360°
1+φ +2φ 2

= 45.84°
   

 

Of special interest is that the angles at B and D 
work out to be precisely equal to 120°. This golden 
kite looks a little ‘fatter’ than the preceding convex 

one, and is therefore perhaps a little more visually 
pleasing. This observation, of course, also relates 
to the ratio of the diagonals, which in the first 
case is 2.40 (rounded off to 2 decimals) while in 
the case in Figure 14, it is 1.84 (rounded off to 
2 decimals), and hence the latter is closer to the 
golden ratio phi.

To define a golden kite that is hopefully even 
more visually appealing than the previous two, I 
next thought of defining a ‘golden kite’ as shown 
in Figure 15, namely, as a (convex3) kite with 
both its sides and diagonals in the golden ratio.

 
Figure 15: Third case: Golden kite with sides and diagonals in the golden ratio 

Though one can drag a dynamically constructed kite in dynamic geometry with sides 

constructed in the golden ratio so that its diagonals are approximately also in the golden 

ratio, making an accurate construction required the calculation of one of the angles. At 

first I again tried to use the cosine rule, since it had proved effective in the case of one 

golden parallelogram as well as one isosceles trapezium case, but with no success. 

Eventually switching strategies, and assuming AB = 1, applying the theorem of 

Pythagoras to the right triangles ABE and ADE gave the following: 



y2  BD 2

4 2
1

BD 2

4 2
 (BD  y)2   2 .

 

Solving for y in the first equation and substituting into the second one gave the following 

equation in terms of BD: 

 



BD 2 2BD 1 BD 2

4 2
1 0. 

This is a complex function involving both a quadratic function as well as a square root 

function of BD. In order to solve this equation, the easiest way as shown in Figure 16 was 

to use my dynamic geometry software (Sketchpad) to quickly graph the function and find 

the solution for x = BD = 2.20 (rounded off to 2 decimals). From there one could easily 

use Pythagoras to determine BE, and use the trigonometric ratios to find all the angles, 

giving, for example, angle BAD = 112.28°. So as expected, this golden kite is slightly 

‘fatter’ and more evenly proportionate than the previous two cases. One could therefore 

argue that it might be visually more pleasing also.  
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To define a golden kite that is hopefully even more visually appealing than the 

previous two, I next thought of defining a ‘golden kite’ as shown in Figure 15, namely, as 

a (convex3) kite with both its sides and diagonals in the golden ratio. 

                                                 
3 For the sake of brevity we shall disregard the concave case here. 

Figure 13. First case of golden kite

Figure 14. Second case of golden kite

1

3 For the sake of brevity we shall disregard the concave case here.
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for ‘convenience’ is the ease by which the other 
properties can be derived from it.

golden ratio of sides or diagonals in the definition, substantially simplifies the deductive 

structure. This illustrates the important educational point that, generally, we choose our 

mathematical definitions for convenience and one of the criteria for ‘convenience’ is the 

ease by which the other properties can be derived from it. 

 
Figure 10: Third golden isosceles trapezium 

Another completely different way to define and conceptualize a golden isosceles 

trapezium is to again use a golden triangle. As shown in Figure 10, by reflecting a golden 

triangle ABC in the perpendicular bisector of one of its ‘legs’ BC, produces a ‘golden 

isosceles trapezium’ where the ratio BC/AB is phi, and the acute ‘base’ angle is 72°. 

Moreover, since angle BAD = 108° and angle ADC = 36°, it follows that angle ABD is 

also 36°. Hence, AD = AB (= DC), and therefore the two parallel sides are also in the 

golden ratio, and as with the preceding case, the diagonals therefore also divide each 

other into the golden ratio. Of interest also is to note that the diagonals AC and DB each 

respectively bisect the ‘base’ angles2 at B and C.  

 
Figure 11: A fourth golden isosceles trapezium 

                                                 
2 In De Villiers (2009, p. 154-155; 207) a general isosceles trapezium with three adjacent sides equal is 
called a trilateral trapezium, and the property that a pair of adjacent, congruent angles are bisected by the 
diagonals is also mentioned. Also see: http://dynamicmathematicslearning.com/quad-tree-new-web.html 
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to be known.
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favoring the golden isosceles trapezium, defined 
and constructed in Figure 10, might be that it 
appears in both the regular convex pentagon as 
well as the regular star pentagon as illustrated in 
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2 In De Villiers (2009, p. 154-155; 207) a general isosceles trapezium with three adjacent sides equal is called a trilateral trapezium, and the property 
that a pair of adjacent, congruent angles are bisected by the diagonals is also mentioned. Also see: http://dynamicmathematicslearning.com/quad-
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decimals), and since it is further from the golden 
ratio, explains the elongated, thinner shape in 
comparison with the golden kites in Figures 14 
and 15.

Last, but not least, one can also choose to define 
the famous Penrose kite and dart as ‘golden kites’, 
which are illustrated in Figure 19. As can be seen, 
they can be obtained from a rhombus with angles 
of 72° and 108° by dividing the long diagonal 
of the rhombus in the ratio of phi so that the 
‘symmetrical’ diagonal of the Penrose kite is in 
the ratio phi to the ‘symmetrical’ diagonal of the 
dart. It is left to the reader to verify that from 
this construction it follows that both the Penrose 
kite and dart have their sides in the ratio of phi. 
Moreover, the Penrose kites and darts can be used 
to tile the plane non-periodically, and the ratio of 
the number of kites to darts tends towards phi as 
the number of tiles increase (Darvas, 2007: 204). 
Of additional interest, is that the ‘fat’ rhombus 
formed by the Penrose kite and dart as shown 
in Figure 19, also non-periodically tiles with 
the ‘thin’ rhombus given earlier by the second 
golden rhombus in Figure 7, and the ratio of the 
number of ‘fat’ rhombi to ‘thin’ rhombi similarly 
tends towards phi as the number of tiles increase 
(Darvas, 2007: 202). The interested reader will 
find various websites on the Internet giving 
examples of Penrose tiles of kites and darts as well 
as of the mentioned rhombi.

 
Figure 19: Penrose kite and dart 

Last, but not least, one can also choose to define the famous Penrose kite and dart as 

‘golden kites’, which are illustrated in Figure 19. As can be seen, they can be obtained 

from a rhombus with angles of 72° and 108° by dividing the long diagonal of the 

rhombus in the ratio of phi so that the ‘symmetrical’ diagonal of the Penrose kite is in the 

ratio phi to the ‘symmetrical’ diagonal of the dart. It is left to the reader to verify that 

from this construction it follows that both the Penrose kite and dart have their sides in the 

ratio of phi. Moreover, the Penrose kites and darts can be used to tile the plane non-

periodically, and the ratio of the number of kites to darts tends towards phi as the number 

of tiles increase (Darvas, 2007: 204). Of additional interest, is that the ‘fat’ rhombus 

formed by the Penrose kite and dart as shown in Figure 19, also non-periodically tiles 

with the ‘thin’ rhombus given earlier by the second golden rhombus in Figure 7, and the 

ratio of the number of ‘fat’ rhombi to ‘thin’ rhombi similarly tends towards phi as the 

number of tiles increase (Darvas, 2007: 202). The interested reader will find various 

websites on the Internet giving examples of Penrose tiles of kites and darts as well as of 

the mentioned rhombi. 

Constructively Defining Other ‘Golden Quadrilaterals’ 

This investigation has already become longer than I’d initially anticipated, and it is time 

to finish it off before I start boring the reader. Moreover, my main objective of showing 

constructive defining in action has hopefully been achieved by now. 

 However, I’d like to point out that there are several other types of quadrilaterals 

for which one can similarly explore ways to define ‘golden quadrilaterals’, e.g., cyclic 

Figure 19. Penrose kite and dart

1

4 In De Villiers (2009, p. 154-155; 207) , a general kite with three adjacent angles equal is called a triangular kite, and the property that a pair of 
adjacent, congruent sides are bisected by the tangent points of the incircle is also mentioned. The Penrose kite in Figure 19 is also an example of a 
triangular kite. Also see: http://dynamicmathematicslearning.com/quad-tree-new-web.html

cases since the angles only differ by a few degrees 
(as can be easily verified by calculation by the 
reader). Also note that for the construction in 
Figure 17, as we’ve already seen earlier, AD to AB 
will be in the golden ratio, if and only if, isosceles 
trapezium ABCD is a golden rectangle.

we’ve already seen earlier, AD to AB will be in the golden ratio, if and only if, isosceles 

trapezium ABCD is a golden rectangle. 

 
Figure 18: Constructing golden kite tangent to circumcircle of KLMN 

Since all isosceles trapezia are cyclic (and all kites are circumscribed), another way to 

conceptualize and constructively define a ‘golden kite’ would be to also construct the 

‘dual’ of each of the golden isosceles trapezia already discussed. For example, consider 

the golden isosceles trapezium KLMN defined in Figure 10, and its circumcircle as shown 

in Figure 18. As was the case for the golden rectangle, we can now similarly construct 

perpendiculars to the radii at each of the vertices to produce a corresponding dual ‘golden 

kite’ ABCD. It is now left to the reader to verify that CBD is a golden triangle (hence 

BC/BD = phi) and angle ABC = angle BAD = angle ADC = 108°. In addition ABCD has 

the dual property (to the angle bisection of two angles by diagonals in KLMN) of K and N 

being respective midpoints of AB and AD4. The reader may also wish to verify that 

AC/BD = 1.90 (rounded off to 2 decimals), and since it is further from the golden ratio, 

explains the elongated, thinner shape in comparison with the golden kites in Figures 14 

and 15. 

                                                 
4 In De Villiers (2009, p. 154-155; 207) , a general kite with three adjacent angles equal is called a 
triangular kite, and the property that a pair of adjacent, congruent sides are bisected by the tangent points 
of the incircle is also mentioned. The Penrose kite in Figure 19 is also an example of a triangular kite. Also 
see: http://dynamicmathematicslearning.com/quad-tree-new-web.html 

Figure 18. Constructing golden kite tangent to 
circumcircle of KLMN

Since all isosceles trapezia are cyclic (and all kites 
are circumscribed), another way to conceptualize 
and constructively define a ‘golden kite’ would 
be to also construct the ‘dual’ of each of the 
golden isosceles trapezia already discussed. For 
example, consider the golden isosceles trapezium 
KLMN defined in Figure 10, and its circumcircle 
as shown in Figure 18. As was the case for the 
golden rectangle, we can now similarly construct 
perpendiculars to the radii at each of the vertices 
to produce a corresponding dual ‘golden kite’ 
ABCD. It is now left to the reader to verify that 
CBD is a golden triangle (hence BC/BD = phi) 
and angle ABC = angle BAD = angle ADC = 108°. 
In addition ABCD has the dual property (to the 
angle bisection of two angles by diagonals in 
KLMN) of K and N being respective midpoints 
of AB and AD . The reader may also wish to 
verify that AC/BD = 1.90 (rounded off to 2 
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Though one can drag a dynamically constructed 
kite in dynamic geometry with sides constructed 
in the golden ratio so that its diagonals are 
approximately also in the golden ratio, making 
an accurate construction required the calculation 
of one of the angles. At first I again tried to use 
the cosine rule, since it had proved effective in 
the case of one golden parallelogram as well as 
one isosceles trapezium case, but with no success. 
Eventually switching strategies, and assuming AB 
= 1, applying the theorem of Pythagoras to the 
right triangles ABE and ADE gave the following:

Solving for y in the first equation and substituting 
into the second one gave the following equation 
in terms of BD:

This is a complex function involving both a 
quadratic function as well as a square root 
function of BD. To solve this equation, the 
easiest way as shown in Figure 16 was to use 
my dynamic geometry software (Sketchpad) to 

quickly graph the function and find the solution 
for x = BD = 2.20 (rounded off to 2 decimals). 
From there one could easily use Pythagoras to 
determine BE, and use the trigonometric ratios 
to find all the angles, giving, for example, angle 
BAD = 112.28°. So as expected, this golden kite 
is slightly ‘fatter’ and more evenly proportionate 
than the previous two cases. One could therefore 
argue that it might be visually more pleasing also.

In addition, the midpoint rectangle of the third 
golden kite in Figure 15, since its diagonals are in 
the golden ratio, is a golden rectangle.

On that note, jumping back to the previous 
section, this reminded me that a fifth way in 
which we could define a golden isosceles trapezoid 
might be to define it as an isosceles trapezium 
with its mid-segments KM and LN in the golden 
ratio as shown in Figure 17, since its midpoint 
rhombus would then be a golden rhombus (with 
diagonals in golden ratio). However, in general, 
such an isosceles trapezium is dynamic and can 
change shape, and we need to add a further 
property to fix its shape. For example, in the 1st 
case shown in Figure 17 we could impose the 
condition that BC/AD = phi, or as in the 2nd case, 
we can have AB = AD = DC (so the base angles 
at B and C would respectively be bisected by the 
diagonals DB and AC). As can be seen, it is very 
difficult to visually distinguish between these two 

Figure 16. Solving for BD by graphing Figure 17. Fifth case: Golden isosceles trapezia  
via midsegments in golden ratio
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Figure 17: Fifth case: Golden isosceles trapezia via midsegments in golden ratio 
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Figure 16: Solving for BD by graphing 

In addition, the midpoint rectangle of the third golden kite in Figure 15, since its 

diagonals are in the golden ratio, is a golden rectangle.  

 
Figure 17: Fifth case: Golden isosceles trapezia via midsegments in golden ratio 
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decimals), and since it is further from the golden 
ratio, explains the elongated, thinner shape in 
comparison with the golden kites in Figures 14 
and 15.

Last, but not least, one can also choose to define 
the famous Penrose kite and dart as ‘golden kites’, 
which are illustrated in Figure 19. As can be seen, 
they can be obtained from a rhombus with angles 
of 72° and 108° by dividing the long diagonal 
of the rhombus in the ratio of phi so that the 
‘symmetrical’ diagonal of the Penrose kite is in 
the ratio phi to the ‘symmetrical’ diagonal of the 
dart. It is left to the reader to verify that from 
this construction it follows that both the Penrose 
kite and dart have their sides in the ratio of phi. 
Moreover, the Penrose kites and darts can be used 
to tile the plane non-periodically, and the ratio of 
the number of kites to darts tends towards phi as 
the number of tiles increase (Darvas, 2007: 204). 
Of additional interest, is that the ‘fat’ rhombus 
formed by the Penrose kite and dart as shown 
in Figure 19, also non-periodically tiles with 
the ‘thin’ rhombus given earlier by the second 
golden rhombus in Figure 7, and the ratio of the 
number of ‘fat’ rhombi to ‘thin’ rhombi similarly 
tends towards phi as the number of tiles increase 
(Darvas, 2007: 202). The interested reader will 
find various websites on the Internet giving 
examples of Penrose tiles of kites and darts as well 
as of the mentioned rhombi.

 
Figure 19: Penrose kite and dart 
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Constructively Defining Other ‘Golden Quadrilaterals’ 

This investigation has already become longer than I’d initially anticipated, and it is time 

to finish it off before I start boring the reader. Moreover, my main objective of showing 

constructive defining in action has hopefully been achieved by now. 

 However, I’d like to point out that there are several other types of quadrilaterals 

for which one can similarly explore ways to define ‘golden quadrilaterals’, e.g., cyclic 

Figure 19. Penrose kite and dart

1

4 In De Villiers (2009, p. 154-155; 207) , a general kite with three adjacent angles equal is called a triangular kite, and the property that a pair of 
adjacent, congruent sides are bisected by the tangent points of the incircle is also mentioned. The Penrose kite in Figure 19 is also an example of a 
triangular kite. Also see: http://dynamicmathematicslearning.com/quad-tree-new-web.html

cases since the angles only differ by a few degrees 
(as can be easily verified by calculation by the 
reader). Also note that for the construction in 
Figure 17, as we’ve already seen earlier, AD to AB 
will be in the golden ratio, if and only if, isosceles 
trapezium ABCD is a golden rectangle.

we’ve already seen earlier, AD to AB will be in the golden ratio, if and only if, isosceles 

trapezium ABCD is a golden rectangle. 

 
Figure 18: Constructing golden kite tangent to circumcircle of KLMN 

Since all isosceles trapezia are cyclic (and all kites are circumscribed), another way to 

conceptualize and constructively define a ‘golden kite’ would be to also construct the 

‘dual’ of each of the golden isosceles trapezia already discussed. For example, consider 

the golden isosceles trapezium KLMN defined in Figure 10, and its circumcircle as shown 

in Figure 18. As was the case for the golden rectangle, we can now similarly construct 

perpendiculars to the radii at each of the vertices to produce a corresponding dual ‘golden 

kite’ ABCD. It is now left to the reader to verify that CBD is a golden triangle (hence 

BC/BD = phi) and angle ABC = angle BAD = angle ADC = 108°. In addition ABCD has 

the dual property (to the angle bisection of two angles by diagonals in KLMN) of K and N 

being respective midpoints of AB and AD4. The reader may also wish to verify that 

AC/BD = 1.90 (rounded off to 2 decimals), and since it is further from the golden ratio, 

explains the elongated, thinner shape in comparison with the golden kites in Figures 14 

and 15. 

                                                 
4 In De Villiers (2009, p. 154-155; 207) , a general kite with three adjacent angles equal is called a 
triangular kite, and the property that a pair of adjacent, congruent sides are bisected by the tangent points 
of the incircle is also mentioned. The Penrose kite in Figure 19 is also an example of a triangular kite. Also 
see: http://dynamicmathematicslearning.com/quad-tree-new-web.html 

Figure 18. Constructing golden kite tangent to 
circumcircle of KLMN

Since all isosceles trapezia are cyclic (and all kites 
are circumscribed), another way to conceptualize 
and constructively define a ‘golden kite’ would 
be to also construct the ‘dual’ of each of the 
golden isosceles trapezia already discussed. For 
example, consider the golden isosceles trapezium 
KLMN defined in Figure 10, and its circumcircle 
as shown in Figure 18. As was the case for the 
golden rectangle, we can now similarly construct 
perpendiculars to the radii at each of the vertices 
to produce a corresponding dual ‘golden kite’ 
ABCD. It is now left to the reader to verify that 
CBD is a golden triangle (hence BC/BD = phi) 
and angle ABC = angle BAD = angle ADC = 108°. 
In addition ABCD has the dual property (to the 
angle bisection of two angles by diagonals in 
KLMN) of K and N being respective midpoints 
of AB and AD . The reader may also wish to 
verify that AC/BD = 1.90 (rounded off to 2 
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Though one can drag a dynamically constructed 
kite in dynamic geometry with sides constructed 
in the golden ratio so that its diagonals are 
approximately also in the golden ratio, making 
an accurate construction required the calculation 
of one of the angles. At first I again tried to use 
the cosine rule, since it had proved effective in 
the case of one golden parallelogram as well as 
one isosceles trapezium case, but with no success. 
Eventually switching strategies, and assuming AB 
= 1, applying the theorem of Pythagoras to the 
right triangles ABE and ADE gave the following:

Solving for y in the first equation and substituting 
into the second one gave the following equation 
in terms of BD:

This is a complex function involving both a 
quadratic function as well as a square root 
function of BD. To solve this equation, the 
easiest way as shown in Figure 16 was to use 
my dynamic geometry software (Sketchpad) to 

quickly graph the function and find the solution 
for x = BD = 2.20 (rounded off to 2 decimals). 
From there one could easily use Pythagoras to 
determine BE, and use the trigonometric ratios 
to find all the angles, giving, for example, angle 
BAD = 112.28°. So as expected, this golden kite 
is slightly ‘fatter’ and more evenly proportionate 
than the previous two cases. One could therefore 
argue that it might be visually more pleasing also.

In addition, the midpoint rectangle of the third 
golden kite in Figure 15, since its diagonals are in 
the golden ratio, is a golden rectangle.

On that note, jumping back to the previous 
section, this reminded me that a fifth way in 
which we could define a golden isosceles trapezoid 
might be to define it as an isosceles trapezium 
with its mid-segments KM and LN in the golden 
ratio as shown in Figure 17, since its midpoint 
rhombus would then be a golden rhombus (with 
diagonals in golden ratio). However, in general, 
such an isosceles trapezium is dynamic and can 
change shape, and we need to add a further 
property to fix its shape. For example, in the 1st 
case shown in Figure 17 we could impose the 
condition that BC/AD = phi, or as in the 2nd case, 
we can have AB = AD = DC (so the base angles 
at B and C would respectively be bisected by the 
diagonals DB and AC). As can be seen, it is very 
difficult to visually distinguish between these two 

Figure 16. Solving for BD by graphing Figure 17. Fifth case: Golden isosceles trapezia  
via midsegments in golden ratio
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Figure 16: Solving for BD by graphing 
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compared in terms of the number of properties, 
ease of construction or of proof, and, in this 
particular case in relation to the golden ratio, 
perhaps also of visual appeal. Moreover, it was 
shown how some definitions of the same object 
might be more convenient than others in terms of 
the deductive derivation of other properties not 
contained in the definition.

The process of constructive defining also generally 
applies to the definition and exploration of 
different axiom systems in pure, mathematical 
research where quite often existing axiom 
systems are used as starting blocks which are then 
modified, adapted, generalized, etc., to create 
and explore new mathematical theories. So this 
little episode encapsulates at an elementary level 
some of the main research methodologies used 
by research mathematicians. In that sense, this 

investigation has hopefully also contributed a 
little bit to demystifying where definitions come 
from, and that they don’t just pop out of the 
air into a mathematician’s mind or suddenly 
magically appear in print in a school textbook.

In a classroom context, if a teacher were to ask 
students to suggest various possible definitions 
for golden quadrilaterals or golden hexagons 
of different types, it is likely that they would 
propose several of the examples discussed here, 
and perhaps even a few not explored here. 
Involving students in an activity like this would 
not only more realistically simulate actual 
mathematical research, but also provide students 
with a more personal sense of ownership over the 
mathematical content instead of being seen as 
something that is only the privilege of some select 
mathematically endowed individuals.
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Endnotes

1. This is not the common textbook definition. (The usual definition is: A parallelogram is a four-sided figure for which both pairs of
opposite sides are parallel to each other.) I want to emphasize that concepts can be defined differently and often more powerfully in
terms of symmetry. As argued in De Villiers (2011), it is more convenient defining quadrilaterals in terms of symmetry than the
standard textbook definitions. Reference: De Villiers, M. (2011). Simply Symmetric. Mathematics Teaching, May 2011, p34–36.

2. The Golden Ratio can be defined in different ways. The simplest one is: it is that positive number x for which x = 1 + 1/x;
equivalently, that positive number x for which x2 = x+ 1. The definition implies that x = (

√
5 + 1)/2, whose value is

approximately 1.618034. A rectangle whose length : width ratio is x : 1 is known as a golden rectangle. It has the feature that when
we remove the largest possible square from it (a 1 by 1 square), the rectangle that remains is again a golden rectangle.

3. The term Golden Rectangle has by now a standard meaning. However, terms like Golden Rhombus, Golden Parallelogram, Golden
Trapezium and Golden Kite have been defined in slightly different ways by different authors.
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Constructively Defining Other  
‘Golden Quadrilaterals’
This investigation has already become longer than 
I’d initially anticipated, and it is time to finish it 
off before I start boring the reader. Moreover, my 
main objective of showing constructive defining 
in action has hopefully been achieved by now.

However, I’d like to point out that there are 
several other types of quadrilaterals for which 
one can similarly explore ways to define ‘golden 
quadrilaterals’, e.g., cyclic quadrilaterals, 
circumscribed quadrilaterals, trapeziums5, 
bi-centric quadrilaterals, orthodiagonal 
quadrilaterals, equidiagonal quadrilaterals, etc.

quadrilaterals, circumscribed quadrilaterals, trapeziums5, bi-centric quadrilaterals, 

orthodiagonal quadrilaterals, equidiagonal quadrilaterals, etc. 

 
Figure 20: A golden hexagon with adjacent sides in golden ratio 

Constructively Defining a ‘Golden Cyclic Hexagon’ 

Before closing, I’d like to briefly tease the reader with considering investigating defining 

hexagonal ‘golden’ analogues for at least some of the golden quadrilaterals discussed 

here. For example, the analogous equivalent of a rectangle is an equi-angled, cyclic 

hexagon6 as pointed out in De Villiers (2011; 2016). Hence, one possible way to 

construct a hexagonal analogue for the golden rectangle is to impose the condition on an 

equi-angled, cyclic hexagon that all the pairs of adjacent sides as shown in Figure 19 are 

in the golden ratio; i.e., a ‘golden (cyclic) hexagon’. It is left to the reader to verify that if 

FA/AB = phi, then AL/LM = phi7, etc. In other words, the main diagonals divide each 

other into the golden ratio.  

The observant reader would also note that ABEF, ABCD and CDEF, are all three 

golden trapezia of the type constructed and defined in the first case in Figure 8. 

Moreover, ALNF, ABCF, etc., are golden trapezia of the second type constructed and 

defined in Figure 8.  

                                                 
5 Olive (undated), for example, constructively defines two different, interesting types of golden 
trapezoids/trapeziums. 
6 This type of hexagon is also called a semi-regular angle-hexagon in the referenced papers. 
7 It was with surprised interest that in October 2016, I came upon Odom’s construction at: 
http://demonstrations.wolfram.com/HexagonsAndTheGoldenRatio/, which is the converse of this result. 
With reference to the figure, Odom’s construction involves extending the sides of the equilateral triangle 
LMN to construct three equilateral triangles ABL, CDM and EFN. If the extension is proportional to the 
golden ratio, then the outer vertices of these three triangles determine a (cyclic, equi-angled) hexagon with 
adjacent sides in the golden ratio.  

Figure 20. A golden hexagon with adjacent  
sides in golden ratio

Constructively Defining a  
‘Golden Cyclic Hexagon’
Before closing, I’d like to briefly tease the reader 
with considering defining hexagonal ‘golden’ 
analogues for at least some of the golden 
quadrilaterals discussed here. For example, the 
analogous equivalent of a rectangle is an equi-
angled, cyclic hexagon6 as pointed out in De 
Villiers (2011; 2016). Hence, one possible way 
to construct a hexagonal analogue for the golden 
rectangle is to impose the condition on an 

equi-angled, cyclic hexagon that all the pairs of 
adjacent sides as shown in Figure 19 are in the 
golden ratio; i.e., a ‘golden (cyclic) hexagon’. It 
is left to the reader to verify that if FA/AB = phi, 
then AL/LM = phi7, etc. In other words, the main 
diagonals divide each other into the golden ratio. 

The observant reader would also note that ABEF, 
ABCD and CDEF, are all three golden trapezia 
of the type constructed and defined in the first 
case in Figure 8. Moreover, ALNF, ABCF, etc., 
are golden trapezia of the second type constructed 
and defined in Figure 8. 

 
Figure 21: Cutting off two rhombi and a golden trapezium 

By cutting off two rhombi and a golden isosceles trapezium as shown in Figure 21, we 

also obtain a similar golden cyclic hexagon. Lastly, it is also left to the reader to consider, 

define and investigate an analogous dual of a golden cyclic hexagon. 

Concluding Remarks 

Though most of the mathematical results discussed here are not novel, it is hoped that this 

little investigation has to some extent shown the productive process of constructive 

defining by illustrating how new mathematical objects can be defined and constructed 

from familiar definitions of known objects. In the process, several different possibilities 

may be explored and compared in terms of the number of properties, ease of construction 

or of proof, and, in this particular case, perhaps also of visual appeal. Moreover, it was 

shown how some definitions of the same object might be more convenient than others in 

terms of the deductive derivation of other properties not contained in the definition. 

 The process of constructive defining also generally applies to the definition and 

exploration of different axiom systems in pure, mathematical research where quite often 

existing axiom systems are used as starting blocks which are then modified, adapted, 

generalized, etc., to create and explore new mathematical theories. So this little episode 

encapsulates at an elementary level some of the main research methodologies used by 

research mathematicians. In that sense, this investigation has hopefully also contributed a 

little bit to demystifying where definitions come from, and that they don’t just pop out of 

the air into a mathematician’s mind or suddenly magically appear in print in a school 

textbook. 

 In a classroom context, if a teacher were to ask students to suggest various 

possible definitions for golden quadrilaterals or golden hexagons of different types, it is 

Figure 21. Cutting off two rhombi and a golden 
trapezium

By cutting off two rhombi and a golden isosceles 
trapezium as shown in Figure 21, we also obtain a 
similar golden cyclic hexagon. Lastly, it is also left 
to the reader to consider, define and investigate 
an analogous dual of a golden cyclic hexagon.

Concluding Remarks
Though most of the mathematical results 
discussed here are not novel, it is hoped that this 
little investigation has to some extent shown 
the productive process of constructive defining 
by illustrating how new mathematical objects 
can be defined and constructed from familiar 
definitions of known objects. In the process, 
several different possibilities may be explored and 

1

5 Olive (undated), for example, constructively defines two different, interesting types of golden trapezoids/trapeziums.
6 This type of hexagon is also called a semi-regular angle-hexagon in the referenced papers.
7 It was with surprised interest that in October 2016, I came upon Odom’s construction at: http://demonstrations.wolfram.com/

HexagonsAndTheGoldenRatio/, which is the converse of this result. With reference to the figure, Odom’s construction involves extending the sides 
of the equilateral triangle LMN to construct three equilateral triangles ABL, CDM and EFN. If the extension is proportional to the golden ratio, 
then the outer vertices of these three triangles determine a (cyclic, equi-angled) hexagon with adjacent sides in the golden ratio. 
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compared in terms of the number of properties, 
ease of construction or of proof, and, in this 
particular case in relation to the golden ratio, 
perhaps also of visual appeal. Moreover, it was 
shown how some definitions of the same object 
might be more convenient than others in terms of 
the deductive derivation of other properties not 
contained in the definition.

The process of constructive defining also generally 
applies to the definition and exploration of 
different axiom systems in pure, mathematical 
research where quite often existing axiom 
systems are used as starting blocks which are then 
modified, adapted, generalized, etc., to create 
and explore new mathematical theories. So this 
little episode encapsulates at an elementary level 
some of the main research methodologies used 
by research mathematicians. In that sense, this 

investigation has hopefully also contributed a 
little bit to demystifying where definitions come 
from, and that they don’t just pop out of the 
air into a mathematician’s mind or suddenly 
magically appear in print in a school textbook.

In a classroom context, if a teacher were to ask 
students to suggest various possible definitions 
for golden quadrilaterals or golden hexagons 
of different types, it is likely that they would 
propose several of the examples discussed here, 
and perhaps even a few not explored here. 
Involving students in an activity like this would 
not only more realistically simulate actual 
mathematical research, but also provide students 
with a more personal sense of ownership over the 
mathematical content instead of being seen as 
something that is only the privilege of some select 
mathematically endowed individuals.
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Endnotes

1. This is not the common textbook definition. (The usual definition is: A parallelogram is a four-sided figure for which both pairs of
opposite sides are parallel to each other.) I want to emphasize that concepts can be defined differently and often more powerfully in
terms of symmetry. As argued in De Villiers (2011), it is more convenient defining quadrilaterals in terms of symmetry than the
standard textbook definitions. Reference: De Villiers, M. (2011). Simply Symmetric. Mathematics Teaching, May 2011, p34–36.

2. The Golden Ratio can be defined in different ways. The simplest one is: it is that positive number x for which x = 1 + 1/x;
equivalently, that positive number x for which x2 = x+ 1. The definition implies that x = (

√
5 + 1)/2, whose value is

approximately 1.618034. A rectangle whose length : width ratio is x : 1 is known as a golden rectangle. It has the feature that when
we remove the largest possible square from it (a 1 by 1 square), the rectangle that remains is again a golden rectangle.

3. The term Golden Rectangle has by now a standard meaning. However, terms like Golden Rhombus, Golden Parallelogram, Golden
Trapezium and Golden Kite have been defined in slightly different ways by different authors.
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Constructively Defining Other  
‘Golden Quadrilaterals’
This investigation has already become longer than 
I’d initially anticipated, and it is time to finish it 
off before I start boring the reader. Moreover, my 
main objective of showing constructive defining 
in action has hopefully been achieved by now.

However, I’d like to point out that there are 
several other types of quadrilaterals for which 
one can similarly explore ways to define ‘golden 
quadrilaterals’, e.g., cyclic quadrilaterals, 
circumscribed quadrilaterals, trapeziums5, 
bi-centric quadrilaterals, orthodiagonal 
quadrilaterals, equidiagonal quadrilaterals, etc.

quadrilaterals, circumscribed quadrilaterals, trapeziums5, bi-centric quadrilaterals, 

orthodiagonal quadrilaterals, equidiagonal quadrilaterals, etc. 

 
Figure 20: A golden hexagon with adjacent sides in golden ratio 

Constructively Defining a ‘Golden Cyclic Hexagon’ 

Before closing, I’d like to briefly tease the reader with considering investigating defining 

hexagonal ‘golden’ analogues for at least some of the golden quadrilaterals discussed 

here. For example, the analogous equivalent of a rectangle is an equi-angled, cyclic 

hexagon6 as pointed out in De Villiers (2011; 2016). Hence, one possible way to 

construct a hexagonal analogue for the golden rectangle is to impose the condition on an 

equi-angled, cyclic hexagon that all the pairs of adjacent sides as shown in Figure 19 are 

in the golden ratio; i.e., a ‘golden (cyclic) hexagon’. It is left to the reader to verify that if 

FA/AB = phi, then AL/LM = phi7, etc. In other words, the main diagonals divide each 

other into the golden ratio.  

The observant reader would also note that ABEF, ABCD and CDEF, are all three 

golden trapezia of the type constructed and defined in the first case in Figure 8. 

Moreover, ALNF, ABCF, etc., are golden trapezia of the second type constructed and 

defined in Figure 8.  

                                                 
5 Olive (undated), for example, constructively defines two different, interesting types of golden 
trapezoids/trapeziums. 
6 This type of hexagon is also called a semi-regular angle-hexagon in the referenced papers. 
7 It was with surprised interest that in October 2016, I came upon Odom’s construction at: 
http://demonstrations.wolfram.com/HexagonsAndTheGoldenRatio/, which is the converse of this result. 
With reference to the figure, Odom’s construction involves extending the sides of the equilateral triangle 
LMN to construct three equilateral triangles ABL, CDM and EFN. If the extension is proportional to the 
golden ratio, then the outer vertices of these three triangles determine a (cyclic, equi-angled) hexagon with 
adjacent sides in the golden ratio.  

Figure 20. A golden hexagon with adjacent  
sides in golden ratio

Constructively Defining a  
‘Golden Cyclic Hexagon’
Before closing, I’d like to briefly tease the reader 
with considering defining hexagonal ‘golden’ 
analogues for at least some of the golden 
quadrilaterals discussed here. For example, the 
analogous equivalent of a rectangle is an equi-
angled, cyclic hexagon6 as pointed out in De 
Villiers (2011; 2016). Hence, one possible way 
to construct a hexagonal analogue for the golden 
rectangle is to impose the condition on an 

equi-angled, cyclic hexagon that all the pairs of 
adjacent sides as shown in Figure 19 are in the 
golden ratio; i.e., a ‘golden (cyclic) hexagon’. It 
is left to the reader to verify that if FA/AB = phi, 
then AL/LM = phi7, etc. In other words, the main 
diagonals divide each other into the golden ratio. 

The observant reader would also note that ABEF, 
ABCD and CDEF, are all three golden trapezia 
of the type constructed and defined in the first 
case in Figure 8. Moreover, ALNF, ABCF, etc., 
are golden trapezia of the second type constructed 
and defined in Figure 8. 

 
Figure 21: Cutting off two rhombi and a golden trapezium 

By cutting off two rhombi and a golden isosceles trapezium as shown in Figure 21, we 

also obtain a similar golden cyclic hexagon. Lastly, it is also left to the reader to consider, 

define and investigate an analogous dual of a golden cyclic hexagon. 

Concluding Remarks 

Though most of the mathematical results discussed here are not novel, it is hoped that this 

little investigation has to some extent shown the productive process of constructive 

defining by illustrating how new mathematical objects can be defined and constructed 

from familiar definitions of known objects. In the process, several different possibilities 

may be explored and compared in terms of the number of properties, ease of construction 

or of proof, and, in this particular case, perhaps also of visual appeal. Moreover, it was 

shown how some definitions of the same object might be more convenient than others in 

terms of the deductive derivation of other properties not contained in the definition. 

 The process of constructive defining also generally applies to the definition and 

exploration of different axiom systems in pure, mathematical research where quite often 

existing axiom systems are used as starting blocks which are then modified, adapted, 

generalized, etc., to create and explore new mathematical theories. So this little episode 

encapsulates at an elementary level some of the main research methodologies used by 

research mathematicians. In that sense, this investigation has hopefully also contributed a 

little bit to demystifying where definitions come from, and that they don’t just pop out of 

the air into a mathematician’s mind or suddenly magically appear in print in a school 

textbook. 

 In a classroom context, if a teacher were to ask students to suggest various 

possible definitions for golden quadrilaterals or golden hexagons of different types, it is 

Figure 21. Cutting off two rhombi and a golden 
trapezium

By cutting off two rhombi and a golden isosceles 
trapezium as shown in Figure 21, we also obtain a 
similar golden cyclic hexagon. Lastly, it is also left 
to the reader to consider, define and investigate 
an analogous dual of a golden cyclic hexagon.

Concluding Remarks
Though most of the mathematical results 
discussed here are not novel, it is hoped that this 
little investigation has to some extent shown 
the productive process of constructive defining 
by illustrating how new mathematical objects 
can be defined and constructed from familiar 
definitions of known objects. In the process, 
several different possibilities may be explored and 
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5 Olive (undated), for example, constructively defines two different, interesting types of golden trapezoids/trapeziums.
6 This type of hexagon is also called a semi-regular angle-hexagon in the referenced papers.
7 It was with surprised interest that in October 2016, I came upon Odom’s construction at: http://demonstrations.wolfram.com/

HexagonsAndTheGoldenRatio/, which is the converse of this result. With reference to the figure, Odom’s construction involves extending the sides 
of the equilateral triangle LMN to construct three equilateral triangles ABL, CDM and EFN. If the extension is proportional to the golden ratio, 
then the outer vertices of these three triangles determine a (cyclic, equi-angled) hexagon with adjacent sides in the golden ratio. 


