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Often concepts as simple as triangles and circles can give 
rise to very interesting problems. One such problem was 
given to us by our Math Teacher in class when we were 

learning about incircles and incentres. When given the problem, 
it did not occur to me that the problem had to be solved using 
incentres. Instead, I thought of the problem in a completely 
different method and was able to solve it.

Problem. Given an arbitrary triangle ABC, the problem is to draw 
three circles with their centres at the three vertices of the triangle, 
in such a way that each circle touches the other two circles (i.e., is 
tangent to the other two circles), as in Figure 1.
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This note describes a feature of PPTs (a, b, c) in
which b = c− 1. Here are some PPTs with this
feature:

(3, 4, 5), (5, 12, 13),

(7, 24, 25), (9, 40, 41),

(11, 60, 61), (13, 84, 85),

(15, 112, 113), (21, 220, 221),

(33, 544, 545), (35, 612, 613),

(39, 760, 761), . . . .

Here is the property I discovered:

If (a, b, c) is a PPT with b = c− 1, then ab + ba

is divisible by c.

For example:

• For the PPT (3, 4, 5):
34 + 43 = 145 = 5 × 29;

• For the PPT (5, 12, 13):
512 + 125 = 244389457 = 13 × 18799189.

But in the other PPTs such as (15, 8, 17),
(21, 20, 29), (33, 56, 65), (35, 12, 37),

(39, 80, 89), etc., where b ̸= c− 1, this property
is not to be seen. Why should the property belong
to just this type of PPT?

I will prove the following: if (a, b, c) is a PPT with
b = c− 1, then ab + ba is divisible by c.

Proof. Since b = c− 1 we have (see Box 1):

c =
a2 + 1

2
, b =

a2 − 1
2

.

From b = c− 1 we get b ≡ −1 (mod c),
therefore

ba ≡ (−1)a (mod c) ≡ −1 (mod c),

since a is odd. Next, from a2 = 2c− 1 we get
a2 ≡ −1 (mod c). Raising both sides to power
b/2 (remember that b is an even number), we get

ab ≡ (−1)b/2 (mod c) ≡ 1 (mod c),

since, as per Box 1, b is a multiple of 4 (which
implies that b/2 is an even number). Hence

ab + ba ≡ 1 − 1 ≡ 0 (mod c).

In other words, ab + ba is divisible by c. �
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Follow this by locating a point F on side AB such that BD = BF (Figure 6.1), and then by locating a point 
E on side AC such that AE = AF (Figure 6.2). These constructions provide the points D,E,F. Once these 
three points have been located, the circles can be drawn as earlier (Figure 7).

Explanation. The reason this procedure works is this. Remember that BC = a, CA = b, AB = c.  
In Figures 5.1, 5.2, 6.1 and 6.2, AU = c, hence CU = b − c = CV , therefore BV = a − (b − c) = a − b + c. 
This implies that BD = (a − b + c)/2 = s−b, where s is the semi-perimeter of the triangle, s = (a + b + c)/2. 
From this we get:

AF = c− a− b+ c
2

=
−a+ b+ c

2
= s− a;

CE = b− −a+ b+ c
2

=
a+ b− c

2
= s− c,

CD = a− a− b+ c
2

=
a+ b− c

2
= s− c;

y 2 +
BD 2

4φ 2 = 1

BD 2

4φ 2 + (BD− y) 2 = φ 2.

BD 2 − 2BD

√
1 − BD 2

4φ 2 − φ + 1 = 0.

U = U0 + rU(t− t0),

lim
h→0

Flea
h

= 0.

Δf = hf ′(x) + Flea,
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so AE = s −a as well. Next, notice that

CE = b−

−a+ b+ c

2
=

a+ b− c

2
= s − c,

and also

CD = a−

a− b+ c

2
=

a+ b− c

2
= s − c;

so CE = CD. Therefore we have:

BD = BF, AF = AE, CE = CD,

which means that the circle centred at B, with radius BD, passes through F ; the

circle centred at A, with radius AF , passes through E; and the circle centred at C,

with radius CE, passes through D. These three circles are therefore identical with

the three circles drawn in the earlier construction (Figure 3). Hence the circles can

be drawn as described.
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Solution. Here is how the problem was expected to be solved. First locate the

incentre I of the triangle (this is the point where the internal bisectors of the three

angles of the triangle meet). Next, drop perpendiculars ID, IE and IF from I to

the sides of the triangle. (See Figure 2; the angle bisectors have not been shown.)

Figure 2

Lastly, draw circles: centred at A and passing through E and F ; centred at B and

passing through F and D; and centred at C and passing through D and E. These

circles are the ones we seek. (See Figure 3.)

Figure 3
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Explanation. As the incentre lies on the bisectors of the three angles of the triangle,

it is equidistant from the three sides of the triangle; that is, the segments ID,IE,IF

have equal length (Figure 2). From this it is easy to deduce, using triangle congruence,

that BD = BF , AF = AE, CE = CD. (Draw the segments IA,IB,IC to see why.)

Hence the circles can be drawn as shown in Figure 3.

My solution. I reasoned out a solution in the following way. Let the lengths of

the sides BC,CA,AB be a,b,c, respectively, and let the radii of the circles centred

at A,B,C be x,y,z respectively. The picture appears as shown in Figure 4. The

problem is to find x,y,z respectively.

Figure 4

In the discussion below, I shall assume that side AB is less than side AC in length.

This means that x + y < x + z, i.e., y < z. Mark off a length AU on side AC such

that AU = AB (see Figure 5.1). This is possible since AB < AC. The length of CU

is z −y.

Next, locate a point V on side BC such that CV = CU (see Figure 5.2), and locate

the midpoint D of segment BV . Then BD is the radius of one of the desired circles,

the one centred at B.
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WITHOUT WORDS
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Theorem. In Figure 1, HF = FK.
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so AE = s − a as well. Next, notice thatAF = c− a− b+ c
2
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2

=
a+ b− c

2
= s− c;

y 2 +
BD 2

4φ 2 = 1

BD 2

4φ 2 + (BD− y) 2 = φ 2.

BD 2 − 2BD

√
1 − BD 2

4φ 2 − φ + 1 = 0.

U = U0 + rU(t− t0),

lim
h→0

Flea
h

= 0.

Δf = hf ′(x) + Flea,
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so CE = CD. Therefore we have:

BD = BF, AF = AE, CE = CD,

which means that the circle centred at B, with radius BD, passes through F; the circle centred at A, with 
radius AF, passes through E; and the circle centred at C, with radius CE, passes through D. These three 
circles are therefore identical with the three circles drawn in the earlier construction (Figure 3). Hence the 
circles can be drawn as described.
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