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Thus P+ 3 ≥ 9
2

and the desired result follows. It is easy to see that equality holds if and only if
a = b = c.

The AM-GM-HM inequality

The AM-GM inequality states this: Given any collection of positive numbers, their arithmetic mean is
never less than their geometric mean. Moreover, the two means are equal in precisely one situation:
the given numbers are all identically equal.

In symbols: Let a1, a2, . . ., an be n positive numbers. Their arithmetic mean (AM) and their geometric
mean (GM) are defined to be the following:

AM =
a1 + a2 + · · ·+ an

n
,

GM = (a1a2 · · · an)1/n .
Then we have:

AM ≥ GM.

Equality holds in this relation if and only if a1 = a2 = · · · = an.
The AM-GM inequality may be strengthened to include the harmonic mean (HM). The harmonic mean
of n positive numbers a1, a2, . . ., an is defined to be:

HM =
n

1/a1 + 1/a2 + · · ·+ 1/an
.

The AM-GM-HM inequality states the following:

AM ≥ GM ≥ HM.

Moreover, the equality sign holds if and only if a1 = a2 = · · · = an.
Numerical example. Consider the four numbers 8, 9, 16, 18. Then:

AM =
8 + 9 + 16 + 18

4
=

51
4

= 12.75,

GM = (8 × 9 × 16 × 18)1/4 = 12,

HM =
4

1/8 + 1/9 + 1/16 + 1/18
=

192
17

≈ 11.29.

Observe that AM > GM > HM.

The AM-GM-HM inequality is a tremendously useful inequality. It comes of use in a vast number of
situations.

More often than not one leaves a problem as soon as a solution is found and does not care to see if there is
more to it than meets the eye. But we will explore this problem and create more problems from it by
asking more questions and answering them as they come.

It is quite natural to ask whether P is smaller than a particular number under the given conditions. To be
more precise, we rephrase this as:

Question. Does there exist a positive real number k such that P < k for all positive real numbers a, b, c?
Here as earlier,

P =
a

b+ c
+

b
c+ a

+
c

a+ b
.
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PRITHWIJIT DE P roblem-posing and problem-solving are central

to mathematics. As a student one solves a plethora
of problems of varying levels of difficulty to learn the

applications of theories taught in the mathematics
curriculum. But rarely is one shown how problems are made.
The importance of problem-posing is not emphasized as a
part of learning mathematics. In this article, we show how
new problems may be created from simple mathematical
statements at the secondary school level.

We begin with a simple problem.

Problem. Let a, b, c be three positive real numbers. Prove that
a

b+ c
+

b
c+ a

+
c

a+ b
≥ 3

2
. (1)

This is known as Nesbit’s inequality.

Proof. There are several proofs of this statement. One of
them uses the arithmetic mean-harmonic mean (AM-HM)
inequality (see Box 1). If we call the algebraic expression on
the left hand side P, then by adding 1 to each term we get:

P+ 3 =

(
1 +

a
b+ c

)
+

(
1 +

b
c+ a

)
+

(
1 +

c
a+ b

)

= (a+ b+ c)
(

1
b+ c

+
1

c+ a
+

1
a+ b

)
.

Next, by the AM-HM inequality applied to the three
numbers (b+ c)/2, (c+ a)/2 and (a+ b)/2, we have
b+ c

2
+

c+ a
2

+
a+ b

2
3

≥ 3

2
(

1
b+ c

+
1

c+ a
+

1
a+ b

) ,

∴ a+ b+ c
3

≥ 3

2
(

1
b+ c

+
1

c+ a
+

1
a+ b

) ,

∴ (a+ b+ c) ·
(

1
b+ c

+
1

c+ a
+

1
a+ b

)
≥ 9

2
.

1
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Problem. Let n ≥ 4 be a positive integer and let a1, a2, . . . , an be positive real numbers. Let

Q =
a1

a2 + a3 + · · ·+ an
+

a2

a1 + a3 + · · ·+ an
+ · · ·+ an

a1 + a2 + · · · an−1
. (8)

What is the minimum value of Q?

Note the similarity in form between P and Q. For every term in both P and Q, the numerator and the
denominator add up to the same quantity (a+ b+ c for P and a1 + a2 + · · ·+ an for Q). This suggests
using the same approach for Q as we did for P. Let s = a1 + a2 + · · ·+ an. Then

Q+ n = s
(

1
s− a1

+
1

s− a2
+ · · ·+ 1

s− an

)
, (9)

and by appealing to the AM-HM inequality we obtain:
1

s− a1
+

1
s− a2

+ · · ·+ 1
s− an

n
≥ n

ns− s
=

n
(n− 1)s

. (10)

Therefore:

Q+ n ≥ n2

n− 1
, (11)

which yields Q ≥ n
n− 1

. We readily observe that Q =
n

n− 1
if a1 = a2 = · · · = an. Therefore the

minimum value of Q is
n

n− 1
.

As in the case of P, the maximum value of Q does not exist unless some constraints are placed on
a1, a2, . . . , an. Let us mimic the 3-variable case and demand that

s− ai > ai (12)

for i = 1, 2, . . . , n. Then the conclusion that Q < n is immediate. But what is amazing and perhaps less
obvious is that even in this case we can show that Q < 2. We use the result on fractions stated earlier.
Thus:

ai
s− ai

<
ai + ai

s− ai + ai
=

2ai
s

(13)

and therefore

Q <
2(a1 + a2 + · · ·+ an)

s
= 2. (14)

Once again the reader may try to probe if at all Q ever attains the value 2.

Thus we see that starting with a very simple and known result in algebra we could come up with different
problems either by way of changing the assumptions or through simple generalizations. Heuristics too
played a role in ascertaining whether an algebraic expression would admit an upper bound.

It is not possible to teach a student how to solve each and every problem or how to pose a new one, but
perhaps it is possible to plant in him or her the seeds of an inquiry-based approach towards
problem-solving or problem-posing.

PRITHWIJIT DE is a member of the Mathematical Olympiad Cell at Homi Bhabha Centre for Science 
Education (HBCSE), TIFR. He loves to read and write popular articles in mathematics as much as he enjoys 
mathematical problem solving. His other interests include puzzles, cricket, reading and music. He may be 
contacted at de.prithwijit@gmail.com.
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Analysis. How does one tackle such a question? One way is to try with small values of k and see if the

condition is satisfied. We want a friendly value of k greater than
3
2
. Let us try k = 2. Now we need to

figure out whether P < 2 for all positive real numbers a, b and c. The easiest way to settle this is to look at
any one term of the expression, say, for instance, the first term

a
b+ c

, on the left hand side, and figure out

if it can be made large compared to 2. Indeed it can be made equal to 2 by choosing b = c = 1 and
a = 6. Note that this is not the only way. There are numerous choices of a, b and c for which

a
b+ c

> 2.

Thus we have infinitely many possible choices of a, b and c for which P > 2. There is nothing so special
about the number 2. If we replace 2 by any positive real number k, then also

a
b+ c

> k for infinitely

many positive real numbers a, b and c (one choice is a = 2k+ 2, b = c = 1; it yields
a

b+ c
= k+ 1).

Thus given any positive real number k, we can choose a, b, and c in such a way that P > k. This leads us to
conclude that there does not exist any positive real number k such that P < k for all positive a, b, c.

Now one may ask under what additional conditions on a, b and c will there exist a positive real number k
such that P < k for all positive real numbers a, b and c? What if a, b and c are restricted to assume values
over some finite interval, say (0, 1]? That is, 0 < a ≤ 1, 0 < b ≤ 1, 0 < c ≤ 1. Even in this case, P can
be made larger than any given positive real number k. Because the fraction

a
b+ c

is unaltered if a, b, and c

are replaced by ta, tb, and tc where t is a positive real number such that ta ≤ 1, tb ≤ 1 and tc ≤ 1. But if
we demand that a, b, and c satisfy the following:

b+ c > a, c+ a > b, a+ b > c, (2)

then indeed we have P < 3. In other words if a, b, and c are the side-lengths of a triangle, then we can find
a positive real number k (= 3) such that P < k. But we can do better. We can make P smaller than 2.
How? To see this assume that c = max(a, b, c). Then observe that

a
b+ c

≤ a
a+ b

,
b

c+ a
≤ b

a+ b
,

a
b+ c

< 1, (3)

which leads to
P =

a
b+ c

+
b

c+ a
+

c
a+ b

< 2. (4)

Can P ever equal 2? Perhaps the reader may like to ponder over this.

There is another way of proving P < 2 by using a very elementary fact about fractions. If x and y are
positive real numbers such that x < y then for any positive real number t,

x
y
<

x+ t
y+ t

. (5)

The proof is obvious; just cross-multiply and rearrange terms. By virtue of this and the triangle inequality
we have

a
b+ c

<
a+ a

a+ b+ c
=

2a
a+ b+ c

. (6)

Thus

P <
2(a+ b+ c)
a+ b+ c

= 2. (7)

Generalization
The next step is to see if we can generalize the results obtained above, to more than 3 variables. The new
problem before us is the following.
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