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The following elegant geometric result concerning
a triangle is based on a problem that appeared in the
Regional Mathematics Olympiad (RMO) of 2016.

Let ABC be a scalene triangle, and let D be the midpoint
of BC. Draw median AD. Through D draw a line
perpendicular to AD and let it meet the extended sides AB,
AC at points K, L, respectively. Then points B,C,K, L lie
on a circle if and only if angle BAC is a right angle. (See
Figure 1.)
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The implication in one direction is easy (if the triangle is
right-angled, then the four points are concyclic); but the
reverse implication seems more challenging. We shall give a
geometric solution for the forward implication, followed by
an algebraic solution in which both the implications are
established at the same time.

Geometric proof that the four points are concyclic.We are
given the fact that �BAC is a right angle, and we must prove
that points B,K, L,C are concyclic.
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A SIMPLER WAY TO BISECT AN ANGLE
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Angle bisection using ruler and compass is part of the standard geometry syllabus at the
upper primary level. There is a standard procedure for doing the job, and it is so simple
that one would be hard put to think of an alternative to it that is just as simple, if not
simpler. But here is such a procedure, announced in a Twitter post [1].
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FIGURE 1

It can be depicted using practically no words. In Figure 1, the angle to be bisected is
∡ABC. Draw two arcs DE and FG as shown, centred at B. Next, draw the segments DG
and FE; let them intersect at I. Draw the ray BI. This is the required angle bisector.
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Solution to problem VI-1-S.4
Prove that the product of six consecutive positive integers cannot be a perfect cube.

Solution. Because 6! = 720 is not a perfect cube, we only need to consider products
t = n(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5) with n ≥ 2. Now

t = a3 + 10a2 + 24a

where a = n(n+ 5). Because a ≥ 14, we have:

(a+ 3)3 = a3 + 9a2 + 27a+ 27

= t− (a− 9)(a+ 3)− 3a < t < a3 + 12a2 + 48a+ 64

= (a+ 4)3.

Hence t cannot be a perfect cube.

Solution to problem VI-1-S.5
A square with side a is inscribed in a circle. Find the side of the square inscribed in one of the segments thus
obtained.

Solution. The radius of the circle is
a√
2
. By symmetry it is clear that the sides of the square inscribed in the

segment are parallel to the sides of the bigger square. Let x be the side length of the inscribed square. Then:
(a
2
+ x

)2
+

( x
2

)2
=

a2

2
.

This reduces to
5x2 + 4ax− a2 = 0.

Thus x =
a
5
.
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Next we have, by the cosine rule:

cos�BAD =
AB 2 + AD 2 − BD 2

2AB · AD
, cos�CAD =

AC 2 + AD 2 − CD 2

2AC · AD
;

hence:
cos�BAD
cos�CAD =

AB 2 + AD 2 − BD 2

AC 2 + AD 2 − CD 2 ·
AC
AB

=
c 2 + AD 2 − a 2/4
b 2 + AD 2 − a 2/4

· b
c
.

The theorem of Apollonius implies that:

AD 2 =
b 2

2
+

c 2

2
− a 2

4
.

Substituting this into the previous expression we get:

cos�BAD
cos�CAD =

3c 2 + b 2 − a 2

3b 2 + c 2 − a 2 ·
b
c
.

Hence we have:

Points B,C,K, L concylic ⇐⇒ c
b
=

3c 2 + b 2 − a 2

3b 2 + c 2 − a 2 ·
b
c
.

That is:
Points B,C,K, L concylic ⇐⇒ c 2

(
3b 2 + c 2 − a 2) = b 2 (3c 2 + b 2 − a 2) .

Next we have:

c 2
(
3b 2 + c 2 − a 2)− b 2 (3c 2 + b 2 − a 2) = a 2 (b 2 − c 2

)
−

(
b4 − c4

)

=
(
a 2 − b 2 − c 2

) (
b 2 − c 2

)
.

Hence:
Points B,C,K, L concylic ⇐⇒

(
a 2 − b 2 − c 2

) (
b 2 − c 2

)
= 0.

Since b 2 − c 2 ̸= 0 (we have specifically been told that the triangle is scalene), we deduce finally that:

Points B,C,K, L concylic ⇐⇒ a 2 − b 2 − c 2 = 0 ⇐⇒ �BAC = 90◦. �

Some of you may like to take up the challenge of finding a purely geometric proof for the reverse
implication.

The COMMUNITY MATHEMATICS CENTRE (CoMaC) is an outreach arm of Rishi Valley Education Centre 
(AP) and Sahyadri School (KFI). It holds workshops in the teaching of mathematics and undertakes preparation 
of teaching materials for State Governments and NGOs. CoMaC may be contacted at shailesh.shirali@gmail.com.
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The most obvious approach towards proving that four given points are concyclic is the angle-chasing route:
prove that some two angles are equal. In the present instance, it suffices to prove that �AKD = �ACD, or
that �ALD = �ABD. (These two statements are clearly equivalent to each other.) See Figure 2; we must
prove that x = y.
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The desired equality follows when we notice that x = z and y = z. To see why y = z, observe that both y
and z are complementary to �ALK (and this follows because �LAK and �ADL are right angles). To see why
x = z, note that since△ABC is right-angled at A, its circumcentre lies at the midpoint of the hypotenuse
BC. This means that D is equidistant from vertices A, B,C. Hence DA = DC, which implies that x = z.

Thus the forward implication has been proved: if �BAC is a right angle, then points B,K, L,C are
concyclic.

For the reverse implication, a geometric approach seems rather elusive; we opt for an algebraic approach.
We shall need the following results:

(i) the cosine rule: in△ABC, we have: c 2 = a 2 + b 2 − 2ab cosC, etc;

(ii) the Intersecting Chords theorem, also called the Crossed Chords theorem, and the related notion of
‘power of a point’: given a circle with centre O and radius r, if two of its chords EF and GH intersect
at a point P (which may lie inside or outside the circle), then we have the equality
PE · PF = PO 2 − r 2 = PG · PH. (Note that the distances here are signed ; so if PE and PF point in
opposite directions, then PE · PF ≤ 0.) We need the converse of this theorem (which is also true): if
coplanar points E, F,G,H are placed such that the equality PE · PF = PG · PH is true, where P is the
point of intersection of lines EF and GH, then the points E, F,G,H are concyclic.

(iii) the theorem of Apollonius which tells us that AB 2 + AC 2 = 2AD 2 + 2BD 2.

We reason as follows:

Points B,C,K, L concylic ⇐⇒ AB · AK = AC · AL

⇐⇒ c · AD
cos�KAD = b · AD

cos�LAD

⇐⇒ c
b
=

cos�BAD
cos�CAD .



97At Right Angles  |  Vol. 6, No. 2, August 2017

DB C

A

K

L

Figure 3

Next we have, by the cosine rule:

cos�BAD =
AB 2 + AD 2 − BD 2

2AB · AD
, cos�CAD =

AC 2 + AD 2 − CD 2

2AC · AD
;

hence:
cos�BAD
cos�CAD =

AB 2 + AD 2 − BD 2

AC 2 + AD 2 − CD 2 ·
AC
AB

=
c 2 + AD 2 − a 2/4
b 2 + AD 2 − a 2/4

· b
c
.

The theorem of Apollonius implies that:

AD 2 =
b 2

2
+

c 2

2
− a 2

4
.

Substituting this into the previous expression we get:

cos�BAD
cos�CAD =

3c 2 + b 2 − a 2

3b 2 + c 2 − a 2 ·
b
c
.

Hence we have:

Points B,C,K, L concylic ⇐⇒ c
b
=

3c 2 + b 2 − a 2

3b 2 + c 2 − a 2 ·
b
c
.

That is:
Points B,C,K, L concylic ⇐⇒ c 2

(
3b 2 + c 2 − a 2) = b 2 (3c 2 + b 2 − a 2) .

Next we have:

c 2
(
3b 2 + c 2 − a 2)− b 2 (3c 2 + b 2 − a 2) = a 2 (b 2 − c 2

)
−

(
b4 − c4

)

=
(
a 2 − b 2 − c 2

) (
b 2 − c 2

)
.

Hence:
Points B,C,K, L concylic ⇐⇒

(
a 2 − b 2 − c 2

) (
b 2 − c 2

)
= 0.

Since b 2 − c 2 ̸= 0 (we have specifically been told that the triangle is scalene), we deduce finally that:

Points B,C,K, L concylic ⇐⇒ a 2 − b 2 − c 2 = 0 ⇐⇒ �BAC = 90◦. �

Some of you may like to take up the challenge of finding a purely geometric proof for the reverse
implication.

The COMMUNITY MATHEMATICS CENTRE (CoMaC) is an outreach arm of Rishi Valley Education Centre 
(AP) and Sahyadri School (KFI). It holds workshops in the teaching of mathematics and undertakes preparation 
of teaching materials for State Governments and NGOs. CoMaC may be contacted at shailesh.shirali@gmail.com.

96 At Right Angles  |  Vol. 6, No. 2, August 2017

The most obvious approach towards proving that four given points are concyclic is the angle-chasing route:
prove that some two angles are equal. In the present instance, it suffices to prove that �AKD = �ACD, or
that �ALD = �ABD. (These two statements are clearly equivalent to each other.) See Figure 2; we must
prove that x = y.

y

x

z

DB C

A

K

L

Figure 2

The desired equality follows when we notice that x = z and y = z. To see why y = z, observe that both y
and z are complementary to �ALK (and this follows because �LAK and �ADL are right angles). To see why
x = z, note that since△ABC is right-angled at A, its circumcentre lies at the midpoint of the hypotenuse
BC. This means that D is equidistant from vertices A, B,C. Hence DA = DC, which implies that x = z.

Thus the forward implication has been proved: if �BAC is a right angle, then points B,K, L,C are
concyclic.

For the reverse implication, a geometric approach seems rather elusive; we opt for an algebraic approach.
We shall need the following results:

(i) the cosine rule: in△ABC, we have: c 2 = a 2 + b 2 − 2ab cosC, etc;

(ii) the Intersecting Chords theorem, also called the Crossed Chords theorem, and the related notion of
‘power of a point’: given a circle with centre O and radius r, if two of its chords EF and GH intersect
at a point P (which may lie inside or outside the circle), then we have the equality
PE · PF = PO 2 − r 2 = PG · PH. (Note that the distances here are signed ; so if PE and PF point in
opposite directions, then PE · PF ≤ 0.) We need the converse of this theorem (which is also true): if
coplanar points E, F,G,H are placed such that the equality PE · PF = PG · PH is true, where P is the
point of intersection of lines EF and GH, then the points E, F,G,H are concyclic.

(iii) the theorem of Apollonius which tells us that AB 2 + AC 2 = 2AD 2 + 2BD 2.

We reason as follows:

Points B,C,K, L concylic ⇐⇒ AB · AK = AC · AL

⇐⇒ c · AD
cos�KAD = b · AD

cos�LAD

⇐⇒ c
b
=

cos�BAD
cos�CAD .


