
PBAt Right Angles  |  Vol. 6, No. 2, August 2017

73At Right Angles  |  Vol. 6, No. 3, November 2017PB At Right Angles  |  Vol. 6, No. 3, November 2017

C
la
ss
R
o
o
m

ANANT W 
VYAWAHARE

DIVISIBILITY 
BY 7

Keywords: Divisibility by 7, place value, digits, factors, multiples

This article deals with a simple test for divisibility by 7 for 
natural numbers having a minimum of four digits. Here, 
a case of a six-digit number is proved initially and similar 

proofs follow for other higher-digit numbers.

Six-digit numbers 
Let n be a six-digit natural number, n = abcdef . That is,

n = 100000a + 10000b + 1000c + 100d + 10e + f.  (1)
 
Theorem. 7 divides n if and only if  7 divides |p − q|, where p 
is the number formed by the first three digits of n and q is the 
number formed by the last three digits of n, i.e.,

p = abc = 100a + 10b + c,

q = def   = 100d + 10e + f. (2)

 
Proof. Let n = abcdef . Assume that 7 divides |p − q|; we shall 
prove that 7 divides n.

We are told that 7 divides |p − q|; hence p − q = 7k where k is an 
integer. This yields:

p − q = (100a + 10b + c) − (100d + 10e + f ) = 7k.  (3)
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Next,

n = 100000a + 10000b + 1000c + (100d + 10e + f )

   = 100000a + 10000b + 1000c +(100a + 10b + c) − 7k, (from equation (3))

   = 100100a + 10010b + 1001c − 7k = 1001(100a + 10b + c) − 7k

   = 143 × 7(100a + 10b + c) − 7k.

From this, we see that n is a multiple of 7. That is, 7 divides n. Next, assume that 7 divides n; to prove 
that 7 divides |p − q|, we follow much the same steps as used above (in a slightly different order; please fill 
in the steps).

Corollary. If 7 divides the number abcdef , then 7 divides the number defabc.

Examples
(1) Let n = 976213; then p = 976 and q = 213. Hence p − q = 976 − 213 = 763.

Since 7 divides 763, it follows that 7 divides 976213. (The quotient in the division is 139459.)

(2) Let n = 123782. Here p = 123 and q = 782. Hence |p − q| = |782 − 123| = 659.

Now, 7 does not divide 659. Hence, 7 does not divide 123782.

Remarks
• Similar statements are true for four-digit numbers, five-digit numbers and higher-digit numbers. The 

only condition to be kept in mind, in all cases, is that the q-block should be made up of the last three 
digits from the right side. Then p will be formed by all the digits from the left except the last three, 
as mentioned. That is, q is the number made up of the last three digits of the number, and p is the 
number made up of the remaining digits. The statement made in the theorem now holds, regardless 
of how many digits p has: The original number is divisible by 7 if and only if p − q is divisible by 7. For a 
short proof of this claim, please see Box 1.

• Interestingly, all the cyclic numbers formed from the number 976213 obey the statement given 
above; hence, all these numbers are divisible by 7. For example, 762139 is divisible by 7.

Some more examples
Shown below are some more examples to illustrate this method:

Four-digit numbers:
• Let n = 1239; here, p = 1, q = 239, |p − q| = 239 − 1 = 238. Now, 7 divides 238. Hence 7 divides 

1239.

• Let n = 9321; here, p = 9, q = 321, |p − q| = 321 − 9 = 312. Now, 7 does not divide 312. Hence 7 
does not divide 9321.
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Proof of the General Claim - Box 1

Given a positive integer n, let q be the number made up of the last three digits of n, and 
let p be the number made up of the remaining digits. Then the following is true: n is 
divisible by 7 if and only if p − q is divisible by 7. With p and q as defined above, we have 
the relation n = 1000p + q. For example,

2345 = (2 × 1000) + 345,

12345 = (12 × 1000) + 345.

Hence the following is equivalent to the claim made above:

7 divides 1000p + q  
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Proof of the general claim

Given a positive integer n, let q be the number made up of the last three digits of

n, and let p be the number made up of the remaining digits. Then the following is

true: n is divisible by 7 if and only if p − q is divisible by 7.

With p and q as defined above, we have the relation n = 1000p + q. For example,

2345 = (2 ×1000) + 345,

12345 = (12×1000) + 345.

Hence the following is equivalent to the claim made above:

7 divides 1000p + q ⇐⇒ 7 divides p − q. (5)

Statement (5) may be proved as follows.

Proof. Let a = 1000p + q and b = p − q. Then a + b = 1001p, which is a multiple

of 7 (since 1001 = 7 ×11 ×13). Hence if a is a multiple of 7, so must be b; and if

b is a multiple of 7, so must be a. This is exactly the claim made above. �

Box 1
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  7 divides p − q.    
(5)

Statement (5) may be proved as follows.

Proof. Let a = 1000p + q and b = p − q. Then a + b = 1001p, which is a multiple of 7 
(since 1001 = 7 × 11 × 13). Hence if a is a multiple of 7, so must be b; and if b is a 
multiple of 7, so must be a. This is exactly the claim made above.

Five-digit numbers:
• Let n = 34426; here, p = 34, q = 426, |p − q| = 426 − 34 = 392. Now, 7 divides 392. Hence 7 

divides 34426.

• Let n = 12345; here, p = 12, q = 345, |p − q| = 345 − 12 = 333. Now, 7 does not divide 333. 
Hence 7 does not divide 12345.

Nine-digit numbers:
• Let n = 258469232; here, p = 258469, q = 232, |p − q| = 258237. If we repeat the same step for 

the new number, we get 258−237 = 21. Now, 7 divides 21. Hence 7 divides 258237. Hence 7 
divides 258469232.


