
Therefore PB = 3/2 and CP = 5/2. (Note: We could also have found the length of PB using the angle
bisector theorem, which tells us that CP : PB = 5 : 3.)

Since△APQ ∼= △APB (angle-side-angle or ASA congruence; for: �PAQ = �PAB; �PQA = �PBA,
both being right angles; and AP is a shared side), we have PQ = 3/2.

Note that△CPQ ∼ △CAB, the similarity ratio being PQ/AB = 1/2.
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For any triangle, the radius r of its incircle is given by the formula r = k/s where k is the area and s is the
semi-perimeter of the triangle. In the case of the 3-4-5 triangle this gives an in-radius of r = 6/6 = 1 unit.

Let line AI intersect the incircle at points U and V as shown, and let R be the point of tangency of AB;
then IR = 1, RB = 1, so AR = 2. But AI =

√
5 (by Pythagoras), so AV =

√
5+ 1, which means that the

ratio AV : UV is
AV
UV

=

√
5+ 1
2

= the Golden Ratio ϕ.

We may therefore describe the point U as a Golden Point of AV.

Now we consider triangle PAB, where PA is the bisector of angle A. We already know that PB = 3/2.
Draw the incircle of△PAB; let its centre be J, and let its radius be x. Let T be the point of tangency of the
circle and PB. (See Figure 3.)
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In Figure 1 we see a right-angled 3-4-5 triangle ABC in which
AB = 3, BC = 4 and AC = 5. The incircle (centre I) has
been drawn; also the angle bisector AIP through vertex A,

and a fourth tangent PQ to the incircle.

Since tanA = 4/3, we get:
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=
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Consideration of similar triangles shows us that if a third circle were fitted in between A and the circle
centred at W, we would get a new Golden Section, and so on.

If we “double” the 3-4-5 triangle to make an isosceles triangle (with equal sides 5 and base 6), and consider
the incircles of the two triangles (see Figure 5), their common chord is a diameter of the smaller circle; i.e.,
the common chord KL passes through I.

To see why, let J denote the centre of the larger incircle; both I and J lie on the internal bisector of �BAC.
The radius of this larger incircle is

Area of△AA′C
Semi-perimeter of△AA′C

=
(6× 4)/2

(5+ 6+ 5)/2
=

3
2
.

The radius of this larger incircle is 3/2, while the radius of the smaller circle was earlier established as 1.
That means that the radius of the large incircle is 3/2 times that of the smaller one. Now consideration of
the perpendicular from I to AB together with JB shows us that AJ and AI are in the same ratio as the radii
of the larger and the smaller incircle; that is:

AJ =
3
2
AI, ∴ IJ =

1
2
AI =

√
5
2
.

Now focus attention on the triangle whose vertices are K, I, J. We have:

KI = 1, KJ =
3
2
.

We observe that KJ 2 = KI 2 + IJ 2, which indicates that �KIJ is a right angle. By symmetry, so is �LIJ.
Hence KL is a diameter of the smaller incircle.

This implies that points K, I, L lie in a straight line.
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Since AB = 3 and PB = 3/2, we have (Pythagoras) AP = 3
√
5/2. Hence the semi-perimeter of△PAB is

1
2

(
3+

3
2
+

3
√
5

2

)
=

3
(
3+

√
5
)

4
.

The area of△PAB is 1/2× 3× 3/2 = 9/4. Hence the radius x of its incircle is

x =
9/4

3(3+
√
5)/4

=
3

3+
√
5
=

3
(
3−

√
5
)

4
.

Hence the ratio PB/PT is

PB
PT

=
3/2

3/2− 3(3−
√
5)/4

=
2

2− (3−
√
5)

=
2√
5− 1

=

√
5+ 1
2

.

In other words, T is a Golden Point of PB.
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Let a circle be fitted into the region between A and the incircle of△ABC, with its centre atW (see
Figure 4). Let y be the radius of this small circle.

By using the properties of similar triangles, we get: y/AW = IR/AI, i.e.,
y√

5− 1− y
=

1√
5
,

which yields:

y =
√
5− 1√
5+ 1

=
3−

√
5

2
.

Hence

WI = y+ 1 =
5−

√
5

2
,

and therefore

AI
WI

=

√
5

(5−
√
5)/2

=
2√
5− 1

=

√
5+ 1
2

.

In other words, W is a Golden Point of AI.
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