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riangles are of different shapes. The shape 
of a triangle is determined by its angles, or, 
alternatively, by the ratios of its sides. We shall 
focus on the angle aspect now. To fix its shape, 

it is enough if two angles of a triangle are specified.  So 
we could have a 2-dimensional ‘map’ where every point 
stands for a possible triangle shape and every possible shape 
is represented by a point in the map. For convenience, we 
could take the greatest and least angles of the triangle to 
be the variables. Let us denote the angles of the triangle 
as α, β and γ, satisfying the relation α ≥ β ≥ γ. We could 
represent α and γ on the X-axis and Y-axis, respectively, of 
a plane graph.

Now α cannot be less than 60°, and γ cannot be greater 
than 60° (can you see why?), i.e.,

60° ≤ α < 180°  and  0° < γ ≤ 60°.

(The intermediate angle β has the limits 0° < β < 90°.)
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A RAMACHANDRAN

The triangle inequality 
has a familiar cadence 
to it and most 
students can recite 
it spontaneously. 
In this article, we 
mathematise our 
understanding of 
possible triangle 
shapes, using the 
limits of values which 
the angles first, 
and then the sides, 
take. It's a great 
way for students to 
explore different 
ways of expressing 
their conceptual 
understanding.
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So we now have the triangular region AEC which is the required ‘map’ of triangular shapes. Point A 
represents the equilateral triangle shape. Points on line segment AC, excluding the endpoints A and C, 
stand for isosceles triangles of the form α > β = γ. Points on line segment AE, excluding the endpoints A 
and E, stand for isosceles triangles of the form α = β > γ. Points in the interior of the triangular region 
AEC represent scalene triangle shapes.

2 
 

Actually we have the following additional restrictions on 𝛾𝛾𝛾𝛾 for given 𝛼𝛼𝛼𝛼. The maximum value 
of 𝛾𝛾𝛾𝛾 for a particular value of 𝛼𝛼𝛼𝛼 is given by the relation 𝛾𝛾𝛾𝛾 = (180° –  𝛼𝛼𝛼𝛼)/2 = 90° –  𝛼𝛼𝛼𝛼/2, while 
the minimum value is given by 𝛾𝛾𝛾𝛾 = 180° − 2𝛼𝛼𝛼𝛼. These two relations define two straight lines 
in the 𝛼𝛼𝛼𝛼, 𝛾𝛾𝛾𝛾 plane, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, respectively, intersecting at point 𝐴𝐴𝐴𝐴 (see Figure 2).   

 

 

 

 

 

 

 

 

 

Figure 2 

So we now have the triangular region 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 which is the required ‘map’ of triangular shapes. 
Point 𝐴𝐴𝐴𝐴 represents the equilateral triangle shape. Points on line segment 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, excluding the 
endpoints 𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴, stand for isosceles triangles of the form 𝛼𝛼𝛼𝛼 > 𝛽𝛽𝛽𝛽 = 𝛾𝛾𝛾𝛾. Points on line 
segment 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, excluding the endpoints 𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴, stand for isosceles triangles of the form 
𝛼𝛼𝛼𝛼 = 𝛽𝛽𝛽𝛽 > 𝛾𝛾𝛾𝛾. Points in the interior of the triangular region 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 represent scalene triangle 
shapes.  

 

 

 

 

 

 

Figure 3. 

In Figure 3 we see another line segment marked EF. Points on this line segment, excepting E itself, 
represent right-angled triangles. Point F itself represents the right-angled isosceles triangle (with angles 
45°,45°,90°). Points in the interior of ∆AEF stand for acute-angled scalene triangles, while points within 
∆FEC represent obtuse-angled scalene triangles. Also shown in Figure 3 is the line segment AG with 
a slope of -1. If we move along this line, starting from A, α increases while γ decreases to the same 
extent, leaving β unchanged. Hence points on this line segment, except G itself, represent triangles with 
angles in arithmetic progression. Point H, where this line intersects line EF, represents the 30°, 60°, 90° 
triangle, the only right-angled triangle with angles in arithmetic progression.

Let us now try a similar exercise taking the sides into consideration. We can take the side of intermediate 
length to be of unit length, the shortest of length φ and the longest of length ψ, with the proviso  
φ ≤ 1 ≤ ψ. 

Since we have two variables, we can again think of a 2-D map, taking ψ on the X-axis and φ on the 
Y-axis. Now what are the limits on the values these can take? Clearly

0 < φ ≤ 1    and    1 ≤ ψ < 2.

Thus only points in the α,γ plane lying within these limits can represent possible triangle shapes. Refer 
Rectangle ABCD in Figure 1. 
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MAPPING TRIANGLE SHAPES 
With a guest appearance by the 3-4-5 triangle… 

A Ramachandran 

Triangles are of different shapes. The shape of a triangle is determined by its angles, or, 
alternatively, by the ratios of its sides. We shall focus on the angle aspect now. To fix its 
shape, it is enough if two angles of a triangle are specified.  So we could have a 2-
dimensional ‘map’ where every point stands for a possible triangle shape and every 
possible shape is represented by a point in the map. For convenience, we could take the 
greatest and least angles of the triangle to be the variables. Let us denote the angles of the 
triangle as 𝛼𝛼𝛼𝛼, 𝛽𝛽𝛽𝛽 and 𝛾𝛾𝛾𝛾, satisfying the relation 𝛼𝛼𝛼𝛼 ≥  𝛽𝛽𝛽𝛽 ≥  𝛾𝛾𝛾𝛾. We could represent 𝛼𝛼𝛼𝛼 and 𝛾𝛾𝛾𝛾 on 
the 𝑋𝑋𝑋𝑋-axis and 𝑌𝑌𝑌𝑌-axis, respectively, of a plane graph. 

Now 𝛼𝛼𝛼𝛼 cannot be less than 60°, and 𝛾𝛾𝛾𝛾 cannot be greater than 60° (can you see why?), i.e., 

60° ≤ 𝛼𝛼𝛼𝛼 < 180°  and 0° <  𝛾𝛾𝛾𝛾 ≤ 60°. 

(The intermediate angle 𝛽𝛽𝛽𝛽 has the limits 0° < 𝛽𝛽𝛽𝛽 < 90°.) 

Thus only points in the 𝛼𝛼𝛼𝛼, 𝛾𝛾𝛾𝛾 plane lying within these limits can represent possible triangle 
shapes. Refer Rectangle 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 in Figure 1.  

 

 

 

 

 

 

 

 

Figure 1 Figure 1. 

Actually we have the following additional restrictions on γ for given α. The maximum value of γ for 
a particular value of α is given by the relation γ = (180° – α)/2 = 90° – α/2, while the minimum value 
is given by γ = 180° - 2α. These two relations define two straight lines in the α, γ plane, AC and AE, 
respectively, intersecting at point A (see Figure 2).
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Triangles are of different shapes. The shape of a triangle is determined by its angles, or, 
alternatively, by the ratios of its sides. We shall focus on the angle aspect now. To fix its 
shape, it is enough if two angles of a triangle are specified.  So we could have a 2-
dimensional ‘map’ where every point stands for a possible triangle shape and every 
possible shape is represented by a point in the map. For convenience, we could take the 
greatest and least angles of the triangle to be the variables. Let us denote the angles of the 
triangle as 𝛼𝛼, 𝛽𝛽 and 𝛾𝛾, satisfying the relation 𝛼𝛼 ≥  𝛽𝛽 ≥  𝛾𝛾. We could represent 𝛼𝛼 and 𝛾𝛾 on 
the 𝑋𝑋-axis and 𝑌𝑌-axis, respectively, of a plane graph. 

Now 𝛼𝛼 cannot be less than 60°, and 𝛾𝛾 cannot be greater than 60° (can you see why?), i.e., 

60° ≤ 𝛼𝛼 < 180°  and 0° <  𝛾𝛾 ≤ 60°. 

(The intermediate angle 𝛽𝛽 has the limits 0° < 𝛽𝛽 < 90°.) 

Thus only points in the 𝛼𝛼, 𝛾𝛾 plane lying within these limits can represent possible triangle 
shapes. Refer Rectangle 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 in Figure 1.  
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So we now have the triangular region AEC which is the required ‘map’ of triangular shapes. Point A 
represents the equilateral triangle shape. Points on line segment AC, excluding the endpoints A and C, 
stand for isosceles triangles of the form α > β = γ. Points on line segment AE, excluding the endpoints A 
and E, stand for isosceles triangles of the form α = β > γ. Points in the interior of the triangular region 
AEC represent scalene triangle shapes.
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Figure 3. 

In Figure 3 we see another line segment marked EF. Points on this line segment, excepting E itself, 
represent right-angled triangles. Point F itself represents the right-angled isosceles triangle (with angles 
45°,45°,90°). Points in the interior of ∆AEF stand for acute-angled scalene triangles, while points within 
∆FEC represent obtuse-angled scalene triangles. Also shown in Figure 3 is the line segment AG with 
a slope of -1. If we move along this line, starting from A, α increases while γ decreases to the same 
extent, leaving β unchanged. Hence points on this line segment, except G itself, represent triangles with 
angles in arithmetic progression. Point H, where this line intersects line EF, represents the 30°, 60°, 90° 
triangle, the only right-angled triangle with angles in arithmetic progression.

Let us now try a similar exercise taking the sides into consideration. We can take the side of intermediate 
length to be of unit length, the shortest of length φ and the longest of length ψ, with the proviso  
φ ≤ 1 ≤ ψ. 

Since we have two variables, we can again think of a 2-D map, taking ψ on the X-axis and φ on the 
Y-axis. Now what are the limits on the values these can take? Clearly

0 < φ ≤ 1    and    1 ≤ ψ < 2.
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So we now have the triangular region 𝐴𝐴𝐴𝐴𝐴𝐴 which is the required ‘map’ of triangular shapes. 
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Thus only points in the α,γ plane lying within these limits can represent possible triangle shapes. Refer 
Rectangle ABCD in Figure 1. 
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Given the following data, it is possible to construct 
a unique triangle.

In ΔPQR, ∡P = x < 90°, PQ = r cm, QR = p cm, 
p ≥ r.

We first draw a line segment PQ of length r. We 
then draw a ray from P making an angle x with 
PQ. Keeping the point of a compass opened to 
radius p on Q, we draw an arc to cut the above ray 
at R (Figure. 4).

Two cases arise:

• p = r : In this case, the arc from Q cuts the 
ray from P at point R, yielding an isosceles 
triangle;

• p > r : In this case, the arc from Q cuts the ray 
from P at a point R ‘further downstream’. It 
would also cut the ray extended backwards 
to yield another triangle, but then ∡P would 

Figure 4

Note that the arc would also cut ray CA extended backwards to yield another triangle, but 
then ∡ A would not be obtuse. 
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Given the following data, it is possible to construct a unique triangle. 

In ΔPQR,∡P = x < 90°, PQ = r cm, QR = p cm, p≥ r. 

We first draw a line segment PQ of length �. We then draw a ray from P making an angle � 
with PQ. Keeping the point of a compass opened to radius � on Q, we draw an arc to cut the 
above ray at R (Fig. 4). 
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Two cases arise: 

 � =  �: in this case, the arc from Q cuts the ray from P at point R, yielding an 
isosceles triangle; 

 � >  �: In this case, the arc from Q cuts the ray from P at a point R ‘further 
downstream’. It would also cut the ray extended backwards to yield another 
triangle, but then ∡P would not be acute. Note that the resulting triangle need not be 

not be acute. Note that the resulting triangle 
need not be an acute angled triangle. The angle 
formed at Q could be acute, right or obtuse, 
depending on the data given.

Though the case p < r is not under consideration 
here, we could explore what happens in such a 
case. There are three possibilities. If p > r sin x, the 
arc cuts the ray at two places, which means there 
are two different triangles fitting the given data. If 
p < r sin x, the arc does not cut the ray at all. If  
p = r sin x, the arc is tangent to the ray, with a 
single point of contact. 

Note that in both the above situations, we are 
given two side lengths of a triangle and the 
magnitude of an angle not included between 
those sides, but additional constraints have been 
imposed. We are able to construct unique triangles 
in both cases.

The above deliberations suggest two congruency 
situations supplementary to the commonly 
encountered ones. The first one could be called the 
“OLA” rule (O – obtuse angle, L – longest side, 
A – adjacent side). The second one could be called 
the “AAELO” rule (A – acute angle, A – adjacent 
side, ELO – equal or longer opposite side).

Alternatively, the two rules suggested above and 
the RHS rule could be absorbed into a single 
generalisation: an “AALO” rule [A – angle (which 
could be acute, right or obtuse), A – adjacent side, 
LO – longer opposite side (i.e., longer than the 
given adjacent side)].

Points in the interior of region PQT have lower ψ value and/or higher φ value compared to points on 
the arc QT. That is, they satisfy the inequality ψ2 < φ2 + 1, which means that the longest side faces an 
acute angle. So, such points stand for acute-angled scalene triangles. Similar arguments show that points 
in the region TQS stand for obtuse-angled scalene triangles. 

Also shown in Figure 3 is the line segment PM with a slope of -1. If we move along this line starting 
from P, ψ increases, while φ decreases to the same extent, leaving the perimeter constant. Hence points 
on this line segment, except M itself, stand for triangles with same perimeter as the equilateral triangle 
represented by point P. In other words, the sides of such triangles would be in arithmetic progression, 
while maintaining an intermediate side length of one unit. Point N, where this line intersects arc QT, 
represents a right triangle with sides in A.P. As discussed in earlier articles in AtRiA, such a triangle must 
be a 3-4-5 triangle.

It is satisfying to see that these two approaches have resulted in ‘Maps of triangle shapes’ of similar 
structure. These maps of triangular shapes are themselves triangular. Points close to point A in the first 
case and close to point P in the second case represent shapes close to the equilateral triangle shape. Points 
close to E in the first case and close to Q in the second case represent triangles where one angle is much 
smaller than the other two, which are comparable, resulting in a dagger-like shape. Points close to vertex 
C in the first case and close to vertex S in the second case represent triangles where one angle is much 
larger than the other two, resulting in a bow-like shape. Points on line segment EC in the first case and 
QS in the second case represent triangles which have collapsed into line segments. R.I.P. 

Addendum: The last observation relating an equilateral triangle to a 3-4-5 triangle can be contextualised 
differently. Let us say we set out to draw an ellipse, choosing as foci two points unit distance apart, and 
a string of length two units with ends secured at the foci. In the symmetrical position the string and base 
line together form an equilateral triangle. As we move the string aside, keeping it stretched, we reach a 
point where the string and base line form a right triangle. This triangle is a 3-4-5 triangle.

(If ψ ≥ 2, it would be longer than the sum of the other two sides.) So our ‘map’ is confined to the square 
area PQRS (Figure 4).
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In Figure 3 we see another line segment marked 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸. Points on this line segment, excepting 
𝐸𝐸𝐸𝐸 itself, represent right-angled triangles. Point 𝐸𝐸𝐸𝐸 itself represents the right-angled isosceles 
triangle (with angles 45°, 45°, 90°). Points in the interior of ∆ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 stand for acute-angled 
scalene triangles, while points within ∆ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 represent obtuse-angled scalene triangles. 
Also shown in Figure 3 is the line segment 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 with a slope of −1. If we move along this line, 
starting from 𝐴𝐴𝐴𝐴, 𝛼𝛼𝛼𝛼 increases while 𝛾𝛾𝛾𝛾 decreases to the same extent, leaving 𝛽𝛽𝛽𝛽 unchanged. 
Hence points on this line segment, except 𝐴𝐴𝐴𝐴 itself, represent triangles with angles in 
arithmetic progression. Point 𝐻𝐻𝐻𝐻 , where this line intersects line 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 , represents the 
30°, 60°, 90° triangle, the only right-angled triangle with angles in arithmetic progression. 

Let us now try a similar exercise taking the sides into consideration. We can take the side of 
intermediate length to be of unit length, the shortest of length 𝜑𝜑𝜑𝜑 and the longest of length 
𝜓𝜓𝜓𝜓, with the proviso 𝜑𝜑𝜑𝜑 ≤ 1 ≤ 𝜓𝜓𝜓𝜓.  

Since we have two variables, we can again think of a 2-D map, taking 𝜓𝜓𝜓𝜓 on the 𝑋𝑋𝑋𝑋-axis and 𝜑𝜑𝜑𝜑 
on the 𝑌𝑌𝑌𝑌-axis. Now what are the limits on the values these can take? Clearly 

0 < 𝜑𝜑𝜑𝜑 ≤ 1    and    1 ≤ 𝜓𝜓𝜓𝜓 < 2. 

(If 𝜓𝜓𝜓𝜓 ≥ 2, it would be longer than the sum of the other two sides.) So our ‘map’ is confined 
to the square area 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (Figure 4). 

 

 

 

 

 

 

 

 Figure 4. 

Now there is a further constraint in the values ψ can take for a given φ value: ψ cannot equal or exceed 
φ + 1 at any point. So the line given by the equation ψ = φ + 1 or φ = ψ - 1 is a limiting line for the map 
(line QS in Figure 4). Our map is now confined to the triangular area PQS, excluding points on line QS 
itself.

Clearly, point P represents the equilateral triangle as its coordinates are ψ = 1, φ = 1. Points on the line 
segment PQ, except points P and Q, represent isosceles triangles where the unequal side is shorter than 
either of the equal sides. Points on the line segment PS, except P and S, represent isosceles triangles where 
the unequal side is longer than either of the equal sides. Points in the interior of ∆ PQS stand for scalene 
triangles, since their ψ and φ values would be different, neither being equal to unity.

Now the question naturally arises: What about right-angled triangles? Now a right-angled triangle in 
our scheme would have to satisfy the condition ψ2 = φ2 + 1, or ψ2 - φ2 = 1. Now this is the equation for 
a hyperbola, one arm of which passes through the point Q (ψ = 1, φ = 0) and intersects line PS at the 
point T (ψ = √2, φ = 1); see Figure 5. 

Needless to say, this point represents the isosceles right triangle. Points of the hyperbolic arc lying within 
∆ PQS represent other right triangle shapes.
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Now there is a further constraint in the values 𝜓𝜓𝜓𝜓 can take for a given 𝜑𝜑𝜑𝜑 value: 𝜓𝜓𝜓𝜓 cannot 
equal or exceed 𝜑𝜑𝜑𝜑 + 1 at any point. So the line given by the equation 𝜓𝜓𝜓𝜓 = 𝜑𝜑𝜑𝜑 + 1 or 
𝜑𝜑𝜑𝜑 = 𝜓𝜓𝜓𝜓 − 1 is a limiting line for the map (line 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 in Figure 4). Our map is now confined to 
the triangular area 𝑃𝑃𝑃𝑃𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄, excluding points on line 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 itself. 

Clearly, point 𝑃𝑃𝑃𝑃 represents the equilateral triangle as its coordinates are 𝜓𝜓𝜓𝜓 = 1, 𝜑𝜑𝜑𝜑 = 1. 
Points on the line segment 𝑃𝑃𝑃𝑃𝑄𝑄𝑄𝑄, except points 𝑃𝑃𝑃𝑃 and 𝑄𝑄𝑄𝑄, represent isosceles triangles where 
the unequal side is shorter than either of the equal sides. Points on the line segment 𝑃𝑃𝑃𝑃𝑄𝑄𝑄𝑄, 
except 𝑃𝑃𝑃𝑃 and 𝑄𝑄𝑄𝑄, represent isosceles triangles where the unequal side is longer than either of 
the equal sides. Points in the interior of 𝛥𝛥𝛥𝛥 𝑃𝑃𝑃𝑃𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 stand for scalene triangles, since their 𝜓𝜓𝜓𝜓 and 
𝜑𝜑𝜑𝜑 values would be different, neither being equal to unity. 

Now the question naturally arises: What about right-angled triangles? Now a right-angled 
triangle in our scheme would have to satisfy the condition 𝜓𝜓𝜓𝜓2 = 𝜑𝜑𝜑𝜑2 + 1, or 𝜓𝜓𝜓𝜓2 − 𝜑𝜑𝜑𝜑2 = 1. 
Now this is the equation for a hyperbola, one arm of which passes through the point 𝑄𝑄𝑄𝑄 
(𝜓𝜓𝜓𝜓 = 1, 𝜑𝜑𝜑𝜑 = 0) and intersects line 𝑃𝑃𝑃𝑃𝑄𝑄𝑄𝑄 at the point 𝑇𝑇𝑇𝑇 (𝜓𝜓𝜓𝜓 = √2, 𝜑𝜑𝜑𝜑 = 1); see Figure 5.  

Needless to say, this point represents the isosceles right triangle. Points of the hyperbolic 
arc lying within 𝛥𝛥𝛥𝛥 𝑃𝑃𝑃𝑃𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 represent other right triangle shapes. 

 

 

 

 

 

 

 

 

 

 

Figure 5 

Points in the interior of region 𝑃𝑃𝑃𝑃𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 have lower 𝜓𝜓𝜓𝜓 value and/or higher 𝜑𝜑𝜑𝜑 value compared to 
points on the arc 𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇. That is, they satisfy the inequality 𝜓𝜓𝜓𝜓2 < 𝜑𝜑𝜑𝜑2 + 1, which means that the 
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In Figure 3 we see another line segment marked 𝐸𝐸𝐸𝐸. Points on this line segment, excepting 
𝐸𝐸 itself, represent right-angled triangles. Point 𝐹𝐹 itself represents the right-angled isosceles 
triangle (with angles 45°, 45°, 90°). Points in the interior of ∆ 𝐴𝐴𝐴𝐴𝐴𝐴 stand for acute-angled 
scalene triangles, while points within ∆ 𝐹𝐹𝐹𝐹𝐹𝐹 represent obtuse-angled scalene triangles. 
Also shown in Figure 3 is the line segment 𝐴𝐴𝐴𝐴 with a slope of −1. If we move along this line, 
starting from 𝐴𝐴, 𝛼𝛼 increases while 𝛾𝛾 decreases to the same extent, leaving 𝛽𝛽 unchanged. 
Hence points on this line segment, except 𝐺𝐺 itself, represent triangles with angles in 
arithmetic progression. Point 𝐻𝐻 , where this line intersects line 𝐸𝐸𝐸𝐸 , represents the 
30°, 60°, 90° triangle, the only right-angled triangle with angles in arithmetic progression. 

Let us now try a similar exercise taking the sides into consideration. We can take the side of 
intermediate length to be of unit length, the shortest of length 𝜑𝜑 and the longest of length 
𝜓𝜓, with the proviso 𝜑𝜑 ≤ 1 ≤ 𝜓𝜓.  

Since we have two variables, we can again think of a 2-D map, taking 𝜓𝜓 on the 𝑋𝑋-axis and 𝜑𝜑 
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0 < 𝜑𝜑 ≤ 1    and    1 ≤ 𝜓𝜓 < 2. 
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Now there is a further constraint in the values 𝜓𝜓 can take for a given 𝜑𝜑 value: 𝜓𝜓 cannot 
equal or exceed 𝜑𝜑 + 1 at any point. So the line given by the equation 𝜓𝜓 = 𝜑𝜑 + 1 or 
𝜑𝜑 = 𝜓𝜓 − 1 is a limiting line for the map (line 𝑄𝑄𝑄𝑄 in Figure 4). Our map is now confined to 
the triangular area 𝑃𝑃𝑃𝑃𝑃𝑃, excluding points on line 𝑄𝑄𝑄𝑄 itself. 

Clearly, point 𝑃𝑃 represents the equilateral triangle as its coordinates are 𝜓𝜓 = 1, 𝜑𝜑 = 1. 
Points on the line segment 𝑃𝑃𝑃𝑃, except points 𝑃𝑃 and 𝑄𝑄, represent isosceles triangles where 
the unequal side is shorter than either of the equal sides. Points on the line segment 𝑃𝑃𝑃𝑃, 
except 𝑃𝑃 and 𝑆𝑆, represent isosceles triangles where the unequal side is longer than either of 
the equal sides. Points in the interior of 𝛥𝛥 𝑃𝑃𝑃𝑃𝑃𝑃 stand for scalene triangles, since their 𝜓𝜓 and 
𝜑𝜑 values would be different, neither being equal to unity. 

Now the question naturally arises: What about right-angled triangles? Now a right-angled 
triangle in our scheme would have to satisfy the condition 𝜓𝜓2 = 𝜑𝜑2 + 1, or 𝜓𝜓2 − 𝜑𝜑2 = 1. 
Now this is the equation for a hyperbola, one arm of which passes through the point 𝑄𝑄 
(𝜓𝜓 = 1, 𝜑𝜑 = 0) and intersects line 𝑃𝑃𝑃𝑃 at the point 𝑇𝑇 (𝜓𝜓 = √2, 𝜑𝜑 = 1); see Figure 5.  

Needless to say, this point represents the isosceles right triangle. Points of the hyperbolic 
arc lying within 𝛥𝛥 𝑃𝑃𝑃𝑃𝑃𝑃 represent other right triangle shapes. 
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Points in the interior of region 𝑃𝑃𝑃𝑃𝑃𝑃 have lower 𝜓𝜓 value and/or higher 𝜑𝜑 value compared to 
points on the arc 𝑄𝑄𝑄𝑄. That is, they satisfy the inequality 𝜓𝜓2 < 𝜑𝜑2 + 1, which means that the 

70 Azim Premji University At Right Angles, July 2018



71Azim Premji University At Right Angles, July 2018

52 At Right Angles  |  Vol. 6, No. 1, March 2017

Given the following data, it is possible to construct 
a unique triangle.

In ΔPQR, ∡P = x < 90°, PQ = r cm, QR = p cm, 
p ≥ r.

We first draw a line segment PQ of length r. We 
then draw a ray from P making an angle x with 
PQ. Keeping the point of a compass opened to 
radius p on Q, we draw an arc to cut the above ray 
at R (Figure. 4).

Two cases arise:

• p = r : In this case, the arc from Q cuts the 
ray from P at point R, yielding an isosceles 
triangle;

• p > r : In this case, the arc from Q cuts the ray 
from P at a point R ‘further downstream’. It 
would also cut the ray extended backwards 
to yield another triangle, but then ∡P would 

Figure 4

Note that the arc would also cut ray CA extended backwards to yield another triangle, but 
then ∡ A would not be obtuse. 
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Given the following data, it is possible to construct a unique triangle. 

In ΔPQR,∡P = x < 90°, PQ = r cm, QR = p cm, p≥ r. 

We first draw a line segment PQ of length �. We then draw a ray from P making an angle � 
with PQ. Keeping the point of a compass opened to radius � on Q, we draw an arc to cut the 
above ray at R (Fig. 4). 

 

 

 

 

 

 

Fig. 4 

Two cases arise: 

 � =  �: in this case, the arc from Q cuts the ray from P at point R, yielding an 
isosceles triangle; 

 � >  �: In this case, the arc from Q cuts the ray from P at a point R ‘further 
downstream’. It would also cut the ray extended backwards to yield another 
triangle, but then ∡P would not be acute. Note that the resulting triangle need not be 

not be acute. Note that the resulting triangle 
need not be an acute angled triangle. The angle 
formed at Q could be acute, right or obtuse, 
depending on the data given.

Though the case p < r is not under consideration 
here, we could explore what happens in such a 
case. There are three possibilities. If p > r sin x, the 
arc cuts the ray at two places, which means there 
are two different triangles fitting the given data. If 
p < r sin x, the arc does not cut the ray at all. If  
p = r sin x, the arc is tangent to the ray, with a 
single point of contact. 

Note that in both the above situations, we are 
given two side lengths of a triangle and the 
magnitude of an angle not included between 
those sides, but additional constraints have been 
imposed. We are able to construct unique triangles 
in both cases.

The above deliberations suggest two congruency 
situations supplementary to the commonly 
encountered ones. The first one could be called the 
“OLA” rule (O – obtuse angle, L – longest side, 
A – adjacent side). The second one could be called 
the “AAELO” rule (A – acute angle, A – adjacent 
side, ELO – equal or longer opposite side).

Alternatively, the two rules suggested above and 
the RHS rule could be absorbed into a single 
generalisation: an “AALO” rule [A – angle (which 
could be acute, right or obtuse), A – adjacent side, 
LO – longer opposite side (i.e., longer than the 
given adjacent side)].

Points in the interior of region PQT have lower ψ value and/or higher φ value compared to points on 
the arc QT. That is, they satisfy the inequality ψ2 < φ2 + 1, which means that the longest side faces an 
acute angle. So, such points stand for acute-angled scalene triangles. Similar arguments show that points 
in the region TQS stand for obtuse-angled scalene triangles. 

Also shown in Figure 3 is the line segment PM with a slope of -1. If we move along this line starting 
from P, ψ increases, while φ decreases to the same extent, leaving the perimeter constant. Hence points 
on this line segment, except M itself, stand for triangles with same perimeter as the equilateral triangle 
represented by point P. In other words, the sides of such triangles would be in arithmetic progression, 
while maintaining an intermediate side length of one unit. Point N, where this line intersects arc QT, 
represents a right triangle with sides in A.P. As discussed in earlier articles in AtRiA, such a triangle must 
be a 3-4-5 triangle.

It is satisfying to see that these two approaches have resulted in ‘Maps of triangle shapes’ of similar 
structure. These maps of triangular shapes are themselves triangular. Points close to point A in the first 
case and close to point P in the second case represent shapes close to the equilateral triangle shape. Points 
close to E in the first case and close to Q in the second case represent triangles where one angle is much 
smaller than the other two, which are comparable, resulting in a dagger-like shape. Points close to vertex 
C in the first case and close to vertex S in the second case represent triangles where one angle is much 
larger than the other two, resulting in a bow-like shape. Points on line segment EC in the first case and 
QS in the second case represent triangles which have collapsed into line segments. R.I.P. 

Addendum: The last observation relating an equilateral triangle to a 3-4-5 triangle can be contextualised 
differently. Let us say we set out to draw an ellipse, choosing as foci two points unit distance apart, and 
a string of length two units with ends secured at the foci. In the symmetrical position the string and base 
line together form an equilateral triangle. As we move the string aside, keeping it stretched, we reach a 
point where the string and base line form a right triangle. This triangle is a 3-4-5 triangle.
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(If ψ ≥ 2, it would be longer than the sum of the other two sides.) So our ‘map’ is confined to the square 
area PQRS (Figure 4).
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Now there is a further constraint in the values ψ can take for a given φ value: ψ cannot equal or exceed 
φ + 1 at any point. So the line given by the equation ψ = φ + 1 or φ = ψ - 1 is a limiting line for the map 
(line QS in Figure 4). Our map is now confined to the triangular area PQS, excluding points on line QS 
itself.

Clearly, point P represents the equilateral triangle as its coordinates are ψ = 1, φ = 1. Points on the line 
segment PQ, except points P and Q, represent isosceles triangles where the unequal side is shorter than 
either of the equal sides. Points on the line segment PS, except P and S, represent isosceles triangles where 
the unequal side is longer than either of the equal sides. Points in the interior of ∆ PQS stand for scalene 
triangles, since their ψ and φ values would be different, neither being equal to unity.

Now the question naturally arises: What about right-angled triangles? Now a right-angled triangle in 
our scheme would have to satisfy the condition ψ2 = φ2 + 1, or ψ2 - φ2 = 1. Now this is the equation for 
a hyperbola, one arm of which passes through the point Q (ψ = 1, φ = 0) and intersects line PS at the 
point T (ψ = √2, φ = 1); see Figure 5. 

Needless to say, this point represents the isosceles right triangle. Points of the hyperbolic arc lying within 
∆ PQS represent other right triangle shapes.
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Figure 4 

Now there is a further constraint in the values 𝜓𝜓𝜓𝜓 can take for a given 𝜑𝜑𝜑𝜑 value: 𝜓𝜓𝜓𝜓 cannot 
equal or exceed 𝜑𝜑𝜑𝜑 + 1 at any point. So the line given by the equation 𝜓𝜓𝜓𝜓 = 𝜑𝜑𝜑𝜑 + 1 or 
𝜑𝜑𝜑𝜑 = 𝜓𝜓𝜓𝜓 − 1 is a limiting line for the map (line 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 in Figure 4). Our map is now confined to 
the triangular area 𝑃𝑃𝑃𝑃𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄, excluding points on line 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 itself. 

Clearly, point 𝑃𝑃𝑃𝑃 represents the equilateral triangle as its coordinates are 𝜓𝜓𝜓𝜓 = 1, 𝜑𝜑𝜑𝜑 = 1. 
Points on the line segment 𝑃𝑃𝑃𝑃𝑄𝑄𝑄𝑄, except points 𝑃𝑃𝑃𝑃 and 𝑄𝑄𝑄𝑄, represent isosceles triangles where 
the unequal side is shorter than either of the equal sides. Points on the line segment 𝑃𝑃𝑃𝑃𝑄𝑄𝑄𝑄, 
except 𝑃𝑃𝑃𝑃 and 𝑄𝑄𝑄𝑄, represent isosceles triangles where the unequal side is longer than either of 
the equal sides. Points in the interior of 𝛥𝛥𝛥𝛥 𝑃𝑃𝑃𝑃𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 stand for scalene triangles, since their 𝜓𝜓𝜓𝜓 and 
𝜑𝜑𝜑𝜑 values would be different, neither being equal to unity. 

Now the question naturally arises: What about right-angled triangles? Now a right-angled 
triangle in our scheme would have to satisfy the condition 𝜓𝜓𝜓𝜓2 = 𝜑𝜑𝜑𝜑2 + 1, or 𝜓𝜓𝜓𝜓2 − 𝜑𝜑𝜑𝜑2 = 1. 
Now this is the equation for a hyperbola, one arm of which passes through the point 𝑄𝑄𝑄𝑄 
(𝜓𝜓𝜓𝜓 = 1, 𝜑𝜑𝜑𝜑 = 0) and intersects line 𝑃𝑃𝑃𝑃𝑄𝑄𝑄𝑄 at the point 𝑇𝑇𝑇𝑇 (𝜓𝜓𝜓𝜓 = √2, 𝜑𝜑𝜑𝜑 = 1); see Figure 5.  

Needless to say, this point represents the isosceles right triangle. Points of the hyperbolic 
arc lying within 𝛥𝛥𝛥𝛥 𝑃𝑃𝑃𝑃𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 represent other right triangle shapes. 

 

 

 

 

 

 

 

 

 

 

Figure 5 

Points in the interior of region 𝑃𝑃𝑃𝑃𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 have lower 𝜓𝜓𝜓𝜓 value and/or higher 𝜑𝜑𝜑𝜑 value compared to 
points on the arc 𝑄𝑄𝑄𝑄𝑇𝑇𝑇𝑇. That is, they satisfy the inequality 𝜓𝜓𝜓𝜓2 < 𝜑𝜑𝜑𝜑2 + 1, which means that the 

Figure 5. 
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