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Addendum to 
“A 20-30-130 triangle”

In theMarch 2016 issue of AtRiA, we posed the following problem: Triangle ABC has�A = 130◦,
�B = 30◦ and �C = 20◦. Point P is located within the triangle by drawing rays from B and C,
such that �PBC = 10◦ and �PCB = 10◦. Segment PA is drawn. Find the measure of �PAC. (See
Figure 1.)
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We had offered a trigonometric solution, making use of the sine rule and numerous standard
trigonometric identities. At the end of the article we posed the question of finding a pure geometry
solution.

We are happy to say that a reader (and contributor of several articles in earlier issues), Ajit Athle,
has sent in a very elegant pure geometry solution—just as we had hoped! Here are the details.

Construction: Extend BA to E such that AE = CE (see Figure 2; this is equivalent to saying: let
the perpendicular bisector of segment AC meet BA extended at E); then �EAC = �ECA = 50◦,
and �AEC = 80◦.
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Figure 2. Solution to the 20-30-130 triangle problem by Ajit Athle
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Since �BPC = 2�BEC and also PB = PC, it follows that P is the circumcentre of△EBC. From
this it follows that �EPC = 2�EBC, i.e., �EPC = 60◦.

This in turn implies that △EPC is equilateral, and hence that �PEC = 60◦. From this we infer
that �AEP = 20◦. Again, EA = EP (both sides are equal to EC), i.e., △EAP is isosceles. Hence
�EAP = 80◦. Since �EAC = 50◦, it follows that �PAC = 30◦, i.e., x = 30. �
The fact that P is the circumcentre of △EBC suggests an alternate way of presenting this proof.
Namely: draw the circle centred at P and passing through B and C. Let it intersect the extension
of BA at E. (See Figure 3.)

Then we have PE = PC and �EPC = 2�EBC = 60◦, hence △EPC is equilateral, so �PCE =
60◦ and �ACE = 50◦. We also have �EAC = 50◦ (since �BAC = 130◦); therefore EA = EC =
EP. The rest of the solution is the same as earlier; we get x = 30. �
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Figure 3

Remark. In hindsight, the idea of trying a circle centred at P and passing through B and C should
have suggested itself to us right away; after all, we have PB = PC as per the given data.

But, as they say, hindsight is the best sight of all!
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