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Through the
Symmetry Lens

Part I - Planar Symmetry
and Frieze Patterns

Symmetry seems to be very much a part of our genetic
make-up. Even a young child, unschooled in matters, is
able to differentiate between symmetrical or regular objects

as compared with those that are irregular. Our hearing is tuned
to recognise symmetry in rhythm, music and beats. We see
beauty in symmetry of monuments, designs, decorations and art.

The aim of this article is two-fold. The first is to introduce the
reader to the intuitive as well as the mathematical concept of
symmetry. The other is to use the knowledge of symmetry to see
the world around us. In a sense the aim here is to provide
spectacles capable of discerning symmetry in our daily life and to
use such a device to appreciate the many examples that prevail
and that are so filled with symmetry.

This article has been written in two parts. Part-I covers an
intuitive and mathematical approach to symmetry and discusses
symmetries of two-dimensional objects or shapes that can be
drawn on a sheet of paper as well as symmetries of certain
two-dimensional infinite patterns known as frieze patterns or
strip patterns. Part-II of the article focuses on wallpaper patterns
and their symmetries.
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What is Symmetry?
A basic introduction to symmetry of finite objects
was given in the Review ‘Of Monsters and
Moonshine: A review of symmetry’ by Marcus Du
Sautoy, published in At Right Angles, Vol. 3, No. 1,
March 2014. We shall augment the same here.

Intuitively, symmetry can be thought of as an
action performed on an object, which leaves the
object looking exactly the same and occupying the
exact same place as before. To illustrate, think of a
two-person game with one person as the ‘doer’
who performs the action on the object and the
second person as the ‘viewer’ who can see the
action performed by the doer. Imagine however
that the viewer closes her eyes while the action is
performed. When she opens her eyes, if it seems as
though nothing has happened to the object—i.e.,
it is in exactly the same state and position as it was
at the start—then the doer’s action is said to be a
symmetry of the object.

If on the other hand the viewer spots a change in
the state of the object—say, that it has moved or
has been broken—then the action is not a
symmetry. A word of caution here: this game is
not based on the viewer’s perception; indeed, we
assume for the purposes of the game that the
viewer will be able to spot any change if it has
occurred.

To illustrate further, let us take a simple geometric
object like a square. The reader can make a cutout

of a square and label the vertices A, B, C, D in the
anti-clockwise direction. The labelling is simply a
device used to track a symmetry. For, if the viewer
has declared that nothing has changed in the
object, then how do we even know that a
symmetry has occurred? The markings are not
considered part of the square.

The reader should also mark the back of the square
with the corresponding vertices on the front and
back coinciding. She should then place the cutout
on a blank sheet of paper and mark its outline.
The vertex labels on the outline square should
correspond to those of the cutout.

In the initial state the cutout is placed within the
outline so that the vertex markings coincide. The
figure below shows a light-blue cutout placed in
an outlined square so that the corresponding
vertices match.
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A symmetry of the square is an action that we can
perform on the cutout such that it stays fully
within the outlined square even after the action is
performed. But now since the vertices have been
labelled, we can track the symmetry by comparing
the labels on the cutout and on the outline.

If the reader experiments with the cutout and the
outline, she will be able to discover for herself that
a square has 8 symmetries, as illustrated in the
pictures below.

The reader should convince herself that a square
has these 8 symmetries and no other. This can be
seen by pinning the square cutout at the centre
and rotating in the counter-clockwise direction.
Only when 0◦, 90◦, 180◦ and 270◦ rotations are
performed will the cutout fit into the outline. At
other angles, the cutout will not fit into the
outline.

Similarly folding the cutout along lines other than
LV, LH, LD, LD′ will not see the two parts on the
either side of the line overlapping exactly. So these
are the only four lines about which reflection can
take place. A reflection symmetry can also be seen
by flipping the cutout along these lines.

From Figure 2 we note that the vertices in the
cutout change position (or not) according to the
symmetry. The relative positions of the vertices in
the cutout with respect to those of the outline help
us describe the symmetry. Figure 3 shows how the
8 symmetries of the square are tracked.

What we have described above is an intuitive
definition of symmetry and we have also described
a method for keeping track of the symmetry.
While we can give a very general mathematical
definition, we will confine our discussion to
objects in a plane or to 3-dimensional space.

Let X denote an object in either a plane or space.
We will think of X as a collection of coordinates
(either two-tuples for a planar object or
three-tuples for a 3-dimensional object). A
symmetry of an object X is a bijective function
from X to itself, which preserves the distance
between any two points of X . In other words, a
symmetry f of X is defined as follows:

1. Function: f is a rule which assigns to each
point x in X, a unique point in X itself, called
the image of x and denoted by f(x).

2. Injective: Distinct points of X get mapped to
distinct points in X. That is, if a and b are two
different points in X, then f(a) and f(b) will be
different points of X.

3. Surjective: Every point d in X is the image of
some point c of X. That is, given d in X, there
exists c in X such that f(c) = d.

4. Distance preserving: For u and v in X, let
d(u, v) denote the distance between the two
points u and v. Then f is ‘distance preserving’ if
for all points u and v in X, it happens that
d(u, v) = d(f(u), f(v)). That is, the distance
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between any two points u and v is the same as
the distance between their images f(u) and f(v).

We will denote by Sym (X ) the set or collection of
all symmetries of an object X.

There are some interesting observations we can
make regarding symmetries. These can be seen
intuitively using the working definition of
symmetry or via the mathematical definition given
above.

Symmetry Groups
Let f, g, h be symmetries of an object X. (The
reader might find it helpful to think of X as a
square.) We note that if we apply f first and then g
then the result is again a symmetry of X which, we
denote by g ∗ f. In mathematical terms, ∗
represents the composition of the functions, and
the above statement says that ∗ is closed on Sym
(X). It can also be shown that ∗ is associative,
that is, (f ∗ g) ∗ h = f ∗ (g ∗ h). Further if we
consider the ‘do nothing’ function defined as
IX(a) = a for all a in X, then f ∗ IX = f = IX ∗ f.
We say that IX is an identity with respect to ∗. We
can also show that for each symmetry f of X there
exists a symmetry denoted as f −1 such that f ∗
f −1 = IX = f −1 ∗ f. The symmetry f −1 is called
the inverse of f. It simply reverses the action of f.

Thus ∗ on Sym (X) is a good way to combine
symmetries, and ∗ is closed and associative; and
identity and inverses exist with respect to ∗. We
say that Sym (X) is a group1 with respect to ∗ and

we call Sym (X) the group of symmetries of X. If
f ∗ g = g ∗ f for all f and g in Sym (X), we say that
Sym (X) is an abelian group.

The group of symmetries of an object helps in
measuring symmetry, or the degree of regularity of
the object. The larger the group of symmetries of
an object, the more regular the object would be,
and vice-versa. For example, if we were to consider
Sym (X) where X is a quadrilateral, then Sym (X)
would have the largest size when X is a square.
Note that a circle has infinitely many symmetries,
because rotation by any angle about the centre is a
symmetry as is reflection about any diameter.

If X is a regular n-sided polygon, its group of
symmetries is called the dihedral group of degree
n. It is denoted as Dn. This group has 2n
symmetries: n rotations and n reflections. The
group of 8 symmetries of a square is denoted by
D4.

A useful learning device for studying a finite group
is a Cayley Table. To make a Cayley Table for D4
we create a 9 by 9 grid where the top row and first
column list the eight symmetries of a square in the
same order. The left topmost cell is empty. The
(i, j) entry in the grid will be the symmetry g ∗ f
(the symmetry f followed by the symmetry g).
Here g is the entry in the first column and ith row,
and f is the entry in the first row and jth column.

Figure 4 shows the Cayley Table for D4 with only
(5, 5) and (5, 6) positions filled. The reader may
wish to use the cutout to compute the other

1A non-empty set G with a binary operation ∗ is a group if ∗ is associative, and identity and inverses exist with respect to ∗. For example,
the set of integers is a group under addition.

Cayley Table for D4
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column list the eight symmetries of a square in the
same order. The left topmost cell is empty. The
(i, j) entry in the grid will be the symmetry g ∗ f
(the symmetry f followed by the symmetry g).
Here g is the entry in the first column and ith row,
and f is the entry in the first row and jth column.

Figure 4 shows the Cayley Table for D4 with only
(5, 5) and (5, 6) positions filled. The reader may
wish to use the cutout to compute the other

1A non-empty set G with a binary operation ∗ is a group if ∗ is associative, and identity and inverses exist with respect to ∗. For example,
the set of integers is a group under addition.

Cayley Table for D4
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entries. Note that R0 will be the identity for D4.
Since LV ∗ LV = R0, LV is its own inverse. The
Cayley Table can be used to find the inverses and
also check if the group is abelian.

In the rest of this article we will concentrate only
on planar objects X. A few points about rotations
and reflections that we ought to consider are
discussed next.

In order to describe a rotation, we must specify the
point about which the rotation takes place. This
point will be referred to as the rotocentre. Also
the direction of rotation must be specified. For
planar figures, the axis of rotation will pass
through the rotocentre and will be perpendicular
to the plane of the object.

Every object X possesses the do-nothing
symmetry or the 0◦ rotation symmetry. This
symmetry is nothing but the identity function IX
of X. If X is a scalene triangle, then Sym(X) =
{IX}, that is, the only symmetry it possesses is the
do-nothing symmetry.

Apart from the 0◦ rotation, all other rotational
symmetries R of a planar object have the property
that just one point remains unchanged by R;
namely, the rotocentre itself. R will map every
other point to a point different from itself.

In the case of a reflection symmetry L of a planar
object, there is a line about which the reflection
takes place. In other words, if we imagine a mirror
placed along the line of reflection (lor), then L
maps points to their mirror images. All points on
the lor are fixed by L (mapped identically to
themselves), whereas points not on the lor are
mapped to their mirror images which are different
from themselves.

It can be proved mathematically that finite planar
objects have only rotational and reflection
symmetries. Here, ‘finite’ means that a rectangle
can be drawn such that the object lies entirely
inside the rectangle. Another result that is very
interesting says that if a planar object has only
finitely many symmetries, then it will either have

only rotational symmetries or an equal number of
rotational and reflection symmetries.

In mathematical language, the result can be
restated as follows. Let X be a planar object, and
suppose that Sym (X) is a finite group. Then Sym
(X) is either a cyclic2 group with n elements which
are only rotations, denoted as Cn, or it is the
dihedral group Dn with 2n elements, namely, n
rotations and n reflections.

Figure 5 shows an example of an object with
symmetry group C4. The object has no reflection
symmetries and only four rotational symmetries of
0◦, 90◦, 180◦, 270◦ about the point of
intersection, in the anticlockwise direction. The
reader should draw a Cayley Table for C4.

Figure 5

Strip Patterns or Frieze Patterns
We now turn our attention to infinite planar
objects of certain types which will also help us
analyse symmetry around us. The aim is to briefly
introduce strip or frieze patterns.

A strip pattern is created by choosing a basic motif
and repeating it at equal intervals to the left and
right along a horizontal line. One can imagine the
number line with the basic motif sitting at every
integer place. A strip pattern is an infinite pattern
that runs along a line in both directions. Any line
would do but for ease we work with a horizontal
line. Consider the example of a strip pattern (see
Figure 6) made from repeating a square motif at

2A group G is called cyclic if there is an element a in G such that every element of G is basically a composed with itself finitely many
times or a−1 composed with itself finitely many times. In other words every element of G is of the form am for some integer m where |m|
represents the number of times either a or a−1 have been composed.
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between any two points u and v is the same as
the distance between their images f(u) and f(v).

We will denote by Sym (X ) the set or collection of
all symmetries of an object X.

There are some interesting observations we can
make regarding symmetries. These can be seen
intuitively using the working definition of
symmetry or via the mathematical definition given
above.

Symmetry Groups
Let f, g, h be symmetries of an object X. (The
reader might find it helpful to think of X as a
square.) We note that if we apply f first and then g
then the result is again a symmetry of X which, we
denote by g ∗ f. In mathematical terms, ∗
represents the composition of the functions, and
the above statement says that ∗ is closed on Sym
(X). It can also be shown that ∗ is associative,
that is, (f ∗ g) ∗ h = f ∗ (g ∗ h). Further if we
consider the ‘do nothing’ function defined as
IX(a) = a for all a in X, then f ∗ IX = f = IX ∗ f.
We say that IX is an identity with respect to ∗. We
can also show that for each symmetry f of X there
exists a symmetry denoted as f −1 such that f ∗
f −1 = IX = f −1 ∗ f. The symmetry f −1 is called
the inverse of f. It simply reverses the action of f.

Thus ∗ on Sym (X) is a good way to combine
symmetries, and ∗ is closed and associative; and
identity and inverses exist with respect to ∗. We
say that Sym (X) is a group1 with respect to ∗ and

we call Sym (X) the group of symmetries of X. If
f ∗ g = g ∗ f for all f and g in Sym (X), we say that
Sym (X) is an abelian group.

The group of symmetries of an object helps in
measuring symmetry, or the degree of regularity of
the object. The larger the group of symmetries of
an object, the more regular the object would be,
and vice-versa. For example, if we were to consider
Sym (X) where X is a quadrilateral, then Sym (X)
would have the largest size when X is a square.
Note that a circle has infinitely many symmetries,
because rotation by any angle about the centre is a
symmetry as is reflection about any diameter.

If X is a regular n-sided polygon, its group of
symmetries is called the dihedral group of degree
n. It is denoted as Dn. This group has 2n
symmetries: n rotations and n reflections. The
group of 8 symmetries of a square is denoted by
D4.

A useful learning device for studying a finite group
is a Cayley Table. To make a Cayley Table for D4
we create a 9 by 9 grid where the top row and first
column list the eight symmetries of a square in the
same order. The left topmost cell is empty. The
(i, j) entry in the grid will be the symmetry g ∗ f
(the symmetry f followed by the symmetry g).
Here g is the entry in the first column and ith row,
and f is the entry in the first row and jth column.

Figure 4 shows the Cayley Table for D4 with only
(5, 5) and (5, 6) positions filled. The reader may
wish to use the cutout to compute the other

1A non-empty set G with a binary operation ∗ is a group if ∗ is associative, and identity and inverses exist with respect to ∗. For example,
the set of integers is a group under addition.

Cayley Table for D4
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between any two points u and v is the same as
the distance between their images f(u) and f(v).

We will denote by Sym (X ) the set or collection of
all symmetries of an object X.

There are some interesting observations we can
make regarding symmetries. These can be seen
intuitively using the working definition of
symmetry or via the mathematical definition given
above.

Symmetry Groups
Let f, g, h be symmetries of an object X. (The
reader might find it helpful to think of X as a
square.) We note that if we apply f first and then g
then the result is again a symmetry of X which, we
denote by g ∗ f. In mathematical terms, ∗
represents the composition of the functions, and
the above statement says that ∗ is closed on Sym
(X). It can also be shown that ∗ is associative,
that is, (f ∗ g) ∗ h = f ∗ (g ∗ h). Further if we
consider the ‘do nothing’ function defined as
IX(a) = a for all a in X, then f ∗ IX = f = IX ∗ f.
We say that IX is an identity with respect to ∗. We
can also show that for each symmetry f of X there
exists a symmetry denoted as f −1 such that f ∗
f −1 = IX = f −1 ∗ f. The symmetry f −1 is called
the inverse of f. It simply reverses the action of f.

Thus ∗ on Sym (X) is a good way to combine
symmetries, and ∗ is closed and associative; and
identity and inverses exist with respect to ∗. We
say that Sym (X) is a group1 with respect to ∗ and

we call Sym (X) the group of symmetries of X. If
f ∗ g = g ∗ f for all f and g in Sym (X), we say that
Sym (X) is an abelian group.

The group of symmetries of an object helps in
measuring symmetry, or the degree of regularity of
the object. The larger the group of symmetries of
an object, the more regular the object would be,
and vice-versa. For example, if we were to consider
Sym (X) where X is a quadrilateral, then Sym (X)
would have the largest size when X is a square.
Note that a circle has infinitely many symmetries,
because rotation by any angle about the centre is a
symmetry as is reflection about any diameter.

If X is a regular n-sided polygon, its group of
symmetries is called the dihedral group of degree
n. It is denoted as Dn. This group has 2n
symmetries: n rotations and n reflections. The
group of 8 symmetries of a square is denoted by
D4.

A useful learning device for studying a finite group
is a Cayley Table. To make a Cayley Table for D4
we create a 9 by 9 grid where the top row and first
column list the eight symmetries of a square in the
same order. The left topmost cell is empty. The
(i, j) entry in the grid will be the symmetry g ∗ f
(the symmetry f followed by the symmetry g).
Here g is the entry in the first column and ith row,
and f is the entry in the first row and jth column.

Figure 4 shows the Cayley Table for D4 with only
(5, 5) and (5, 6) positions filled. The reader may
wish to use the cutout to compute the other

1A non-empty set G with a binary operation ∗ is a group if ∗ is associative, and identity and inverses exist with respect to ∗. For example,
the set of integers is a group under addition.

Cayley Table for D4
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between any two points u and v is the same as
the distance between their images f(u) and f(v).

We will denote by Sym (X ) the set or collection of
all symmetries of an object X.

There are some interesting observations we can
make regarding symmetries. These can be seen
intuitively using the working definition of
symmetry or via the mathematical definition given
above.

Symmetry Groups
Let f, g, h be symmetries of an object X. (The
reader might find it helpful to think of X as a
square.) We note that if we apply f first and then g
then the result is again a symmetry of X which, we
denote by g ∗ f. In mathematical terms, ∗
represents the composition of the functions, and
the above statement says that ∗ is closed on Sym
(X). It can also be shown that ∗ is associative,
that is, (f ∗ g) ∗ h = f ∗ (g ∗ h). Further if we
consider the ‘do nothing’ function defined as
IX(a) = a for all a in X, then f ∗ IX = f = IX ∗ f.
We say that IX is an identity with respect to ∗. We
can also show that for each symmetry f of X there
exists a symmetry denoted as f −1 such that f ∗
f −1 = IX = f −1 ∗ f. The symmetry f −1 is called
the inverse of f. It simply reverses the action of f.

Thus ∗ on Sym (X) is a good way to combine
symmetries, and ∗ is closed and associative; and
identity and inverses exist with respect to ∗. We
say that Sym (X) is a group1 with respect to ∗ and

we call Sym (X) the group of symmetries of X. If
f ∗ g = g ∗ f for all f and g in Sym (X), we say that
Sym (X) is an abelian group.

The group of symmetries of an object helps in
measuring symmetry, or the degree of regularity of
the object. The larger the group of symmetries of
an object, the more regular the object would be,
and vice-versa. For example, if we were to consider
Sym (X) where X is a quadrilateral, then Sym (X)
would have the largest size when X is a square.
Note that a circle has infinitely many symmetries,
because rotation by any angle about the centre is a
symmetry as is reflection about any diameter.

If X is a regular n-sided polygon, its group of
symmetries is called the dihedral group of degree
n. It is denoted as Dn. This group has 2n
symmetries: n rotations and n reflections. The
group of 8 symmetries of a square is denoted by
D4.

A useful learning device for studying a finite group
is a Cayley Table. To make a Cayley Table for D4
we create a 9 by 9 grid where the top row and first
column list the eight symmetries of a square in the
same order. The left topmost cell is empty. The
(i, j) entry in the grid will be the symmetry g ∗ f
(the symmetry f followed by the symmetry g).
Here g is the entry in the first column and ith row,
and f is the entry in the first row and jth column.

Figure 4 shows the Cayley Table for D4 with only
(5, 5) and (5, 6) positions filled. The reader may
wish to use the cutout to compute the other

1A non-empty set G with a binary operation ∗ is a group if ∗ is associative, and identity and inverses exist with respect to ∗. For example,
the set of integers is a group under addition.

Cayley Table for D4
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entries. Note that R0 will be the identity for D4.
Since LV ∗ LV = R0, LV is its own inverse. The
Cayley Table can be used to find the inverses and
also check if the group is abelian.

In the rest of this article we will concentrate only
on planar objects X. A few points about rotations
and reflections that we ought to consider are
discussed next.

In order to describe a rotation, we must specify the
point about which the rotation takes place. This
point will be referred to as the rotocentre. Also
the direction of rotation must be specified. For
planar figures, the axis of rotation will pass
through the rotocentre and will be perpendicular
to the plane of the object.

Every object X possesses the do-nothing
symmetry or the 0◦ rotation symmetry. This
symmetry is nothing but the identity function IX
of X. If X is a scalene triangle, then Sym(X) =
{IX}, that is, the only symmetry it possesses is the
do-nothing symmetry.

Apart from the 0◦ rotation, all other rotational
symmetries R of a planar object have the property
that just one point remains unchanged by R;
namely, the rotocentre itself. R will map every
other point to a point different from itself.

In the case of a reflection symmetry L of a planar
object, there is a line about which the reflection
takes place. In other words, if we imagine a mirror
placed along the line of reflection (lor), then L
maps points to their mirror images. All points on
the lor are fixed by L (mapped identically to
themselves), whereas points not on the lor are
mapped to their mirror images which are different
from themselves.

It can be proved mathematically that finite planar
objects have only rotational and reflection
symmetries. Here, ‘finite’ means that a rectangle
can be drawn such that the object lies entirely
inside the rectangle. Another result that is very
interesting says that if a planar object has only
finitely many symmetries, then it will either have

only rotational symmetries or an equal number of
rotational and reflection symmetries.

In mathematical language, the result can be
restated as follows. Let X be a planar object, and
suppose that Sym (X) is a finite group. Then Sym
(X) is either a cyclic2 group with n elements which
are only rotations, denoted as Cn, or it is the
dihedral group Dn with 2n elements, namely, n
rotations and n reflections.

Figure 5 shows an example of an object with
symmetry group C4. The object has no reflection
symmetries and only four rotational symmetries of
0◦, 90◦, 180◦, 270◦ about the point of
intersection, in the anticlockwise direction. The
reader should draw a Cayley Table for C4.

Figure 5

Strip Patterns or Frieze Patterns
We now turn our attention to infinite planar
objects of certain types which will also help us
analyse symmetry around us. The aim is to briefly
introduce strip or frieze patterns.

A strip pattern is created by choosing a basic motif
and repeating it at equal intervals to the left and
right along a horizontal line. One can imagine the
number line with the basic motif sitting at every
integer place. A strip pattern is an infinite pattern
that runs along a line in both directions. Any line
would do but for ease we work with a horizontal
line. Consider the example of a strip pattern (see
Figure 6) made from repeating a square motif at

2A group G is called cyclic if there is an element a in G such that every element of G is basically a composed with itself finitely many
times or a−1 composed with itself finitely many times. In other words every element of G is of the form am for some integer m where |m|
represents the number of times either a or a−1 have been composed.
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between any two points u and v is the same as
the distance between their images f(u) and f(v).

We will denote by Sym (X ) the set or collection of
all symmetries of an object X.

There are some interesting observations we can
make regarding symmetries. These can be seen
intuitively using the working definition of
symmetry or via the mathematical definition given
above.

Symmetry Groups
Let f, g, h be symmetries of an object X. (The
reader might find it helpful to think of X as a
square.) We note that if we apply f first and then g
then the result is again a symmetry of X which, we
denote by g ∗ f. In mathematical terms, ∗
represents the composition of the functions, and
the above statement says that ∗ is closed on Sym
(X). It can also be shown that ∗ is associative,
that is, (f ∗ g) ∗ h = f ∗ (g ∗ h). Further if we
consider the ‘do nothing’ function defined as
IX(a) = a for all a in X, then f ∗ IX = f = IX ∗ f.
We say that IX is an identity with respect to ∗. We
can also show that for each symmetry f of X there
exists a symmetry denoted as f −1 such that f ∗
f −1 = IX = f −1 ∗ f. The symmetry f −1 is called
the inverse of f. It simply reverses the action of f.

Thus ∗ on Sym (X) is a good way to combine
symmetries, and ∗ is closed and associative; and
identity and inverses exist with respect to ∗. We
say that Sym (X) is a group1 with respect to ∗ and

we call Sym (X) the group of symmetries of X. If
f ∗ g = g ∗ f for all f and g in Sym (X), we say that
Sym (X) is an abelian group.

The group of symmetries of an object helps in
measuring symmetry, or the degree of regularity of
the object. The larger the group of symmetries of
an object, the more regular the object would be,
and vice-versa. For example, if we were to consider
Sym (X) where X is a quadrilateral, then Sym (X)
would have the largest size when X is a square.
Note that a circle has infinitely many symmetries,
because rotation by any angle about the centre is a
symmetry as is reflection about any diameter.

If X is a regular n-sided polygon, its group of
symmetries is called the dihedral group of degree
n. It is denoted as Dn. This group has 2n
symmetries: n rotations and n reflections. The
group of 8 symmetries of a square is denoted by
D4.

A useful learning device for studying a finite group
is a Cayley Table. To make a Cayley Table for D4
we create a 9 by 9 grid where the top row and first
column list the eight symmetries of a square in the
same order. The left topmost cell is empty. The
(i, j) entry in the grid will be the symmetry g ∗ f
(the symmetry f followed by the symmetry g).
Here g is the entry in the first column and ith row,
and f is the entry in the first row and jth column.

Figure 4 shows the Cayley Table for D4 with only
(5, 5) and (5, 6) positions filled. The reader may
wish to use the cutout to compute the other

1A non-empty set G with a binary operation ∗ is a group if ∗ is associative, and identity and inverses exist with respect to ∗. For example,
the set of integers is a group under addition.

Cayley Table for D4
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between any two points u and v is the same as
the distance between their images f(u) and f(v).

We will denote by Sym (X ) the set or collection of
all symmetries of an object X.

There are some interesting observations we can
make regarding symmetries. These can be seen
intuitively using the working definition of
symmetry or via the mathematical definition given
above.

Symmetry Groups
Let f, g, h be symmetries of an object X. (The
reader might find it helpful to think of X as a
square.) We note that if we apply f first and then g
then the result is again a symmetry of X which, we
denote by g ∗ f. In mathematical terms, ∗
represents the composition of the functions, and
the above statement says that ∗ is closed on Sym
(X). It can also be shown that ∗ is associative,
that is, (f ∗ g) ∗ h = f ∗ (g ∗ h). Further if we
consider the ‘do nothing’ function defined as
IX(a) = a for all a in X, then f ∗ IX = f = IX ∗ f.
We say that IX is an identity with respect to ∗. We
can also show that for each symmetry f of X there
exists a symmetry denoted as f −1 such that f ∗
f −1 = IX = f −1 ∗ f. The symmetry f −1 is called
the inverse of f. It simply reverses the action of f.

Thus ∗ on Sym (X) is a good way to combine
symmetries, and ∗ is closed and associative; and
identity and inverses exist with respect to ∗. We
say that Sym (X) is a group1 with respect to ∗ and

we call Sym (X) the group of symmetries of X. If
f ∗ g = g ∗ f for all f and g in Sym (X), we say that
Sym (X) is an abelian group.

The group of symmetries of an object helps in
measuring symmetry, or the degree of regularity of
the object. The larger the group of symmetries of
an object, the more regular the object would be,
and vice-versa. For example, if we were to consider
Sym (X) where X is a quadrilateral, then Sym (X)
would have the largest size when X is a square.
Note that a circle has infinitely many symmetries,
because rotation by any angle about the centre is a
symmetry as is reflection about any diameter.

If X is a regular n-sided polygon, its group of
symmetries is called the dihedral group of degree
n. It is denoted as Dn. This group has 2n
symmetries: n rotations and n reflections. The
group of 8 symmetries of a square is denoted by
D4.

A useful learning device for studying a finite group
is a Cayley Table. To make a Cayley Table for D4
we create a 9 by 9 grid where the top row and first
column list the eight symmetries of a square in the
same order. The left topmost cell is empty. The
(i, j) entry in the grid will be the symmetry g ∗ f
(the symmetry f followed by the symmetry g).
Here g is the entry in the first column and ith row,
and f is the entry in the first row and jth column.

Figure 4 shows the Cayley Table for D4 with only
(5, 5) and (5, 6) positions filled. The reader may
wish to use the cutout to compute the other

1A non-empty set G with a binary operation ∗ is a group if ∗ is associative, and identity and inverses exist with respect to ∗. For example,
the set of integers is a group under addition.

Cayley Table for D4
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between any two points u and v is the same as
the distance between their images f(u) and f(v).

We will denote by Sym (X ) the set or collection of
all symmetries of an object X.

There are some interesting observations we can
make regarding symmetries. These can be seen
intuitively using the working definition of
symmetry or via the mathematical definition given
above.

Symmetry Groups
Let f, g, h be symmetries of an object X. (The
reader might find it helpful to think of X as a
square.) We note that if we apply f first and then g
then the result is again a symmetry of X which, we
denote by g ∗ f. In mathematical terms, ∗
represents the composition of the functions, and
the above statement says that ∗ is closed on Sym
(X). It can also be shown that ∗ is associative,
that is, (f ∗ g) ∗ h = f ∗ (g ∗ h). Further if we
consider the ‘do nothing’ function defined as
IX(a) = a for all a in X, then f ∗ IX = f = IX ∗ f.
We say that IX is an identity with respect to ∗. We
can also show that for each symmetry f of X there
exists a symmetry denoted as f −1 such that f ∗
f −1 = IX = f −1 ∗ f. The symmetry f −1 is called
the inverse of f. It simply reverses the action of f.

Thus ∗ on Sym (X) is a good way to combine
symmetries, and ∗ is closed and associative; and
identity and inverses exist with respect to ∗. We
say that Sym (X) is a group1 with respect to ∗ and

we call Sym (X) the group of symmetries of X. If
f ∗ g = g ∗ f for all f and g in Sym (X), we say that
Sym (X) is an abelian group.

The group of symmetries of an object helps in
measuring symmetry, or the degree of regularity of
the object. The larger the group of symmetries of
an object, the more regular the object would be,
and vice-versa. For example, if we were to consider
Sym (X) where X is a quadrilateral, then Sym (X)
would have the largest size when X is a square.
Note that a circle has infinitely many symmetries,
because rotation by any angle about the centre is a
symmetry as is reflection about any diameter.

If X is a regular n-sided polygon, its group of
symmetries is called the dihedral group of degree
n. It is denoted as Dn. This group has 2n
symmetries: n rotations and n reflections. The
group of 8 symmetries of a square is denoted by
D4.

A useful learning device for studying a finite group
is a Cayley Table. To make a Cayley Table for D4
we create a 9 by 9 grid where the top row and first
column list the eight symmetries of a square in the
same order. The left topmost cell is empty. The
(i, j) entry in the grid will be the symmetry g ∗ f
(the symmetry f followed by the symmetry g).
Here g is the entry in the first column and ith row,
and f is the entry in the first row and jth column.

Figure 4 shows the Cayley Table for D4 with only
(5, 5) and (5, 6) positions filled. The reader may
wish to use the cutout to compute the other

1A non-empty set G with a binary operation ∗ is a group if ∗ is associative, and identity and inverses exist with respect to ∗. For example,
the set of integers is a group under addition.
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entries. Note that R0 will be the identity for D4.
Since LV ∗ LV = R0, LV is its own inverse. The
Cayley Table can be used to find the inverses and
also check if the group is abelian.

In the rest of this article we will concentrate only
on planar objects X. A few points about rotations
and reflections that we ought to consider are
discussed next.

In order to describe a rotation, we must specify the
point about which the rotation takes place. This
point will be referred to as the rotocentre. Also
the direction of rotation must be specified. For
planar figures, the axis of rotation will pass
through the rotocentre and will be perpendicular
to the plane of the object.

Every object X possesses the do-nothing
symmetry or the 0◦ rotation symmetry. This
symmetry is nothing but the identity function IX
of X. If X is a scalene triangle, then Sym(X) =
{IX}, that is, the only symmetry it possesses is the
do-nothing symmetry.

Apart from the 0◦ rotation, all other rotational
symmetries R of a planar object have the property
that just one point remains unchanged by R;
namely, the rotocentre itself. R will map every
other point to a point different from itself.
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Figure 5

Strip Patterns or Frieze Patterns
We now turn our attention to infinite planar
objects of certain types which will also help us
analyse symmetry around us. The aim is to briefly
introduce strip or frieze patterns.

A strip pattern is created by choosing a basic motif
and repeating it at equal intervals to the left and
right along a horizontal line. One can imagine the
number line with the basic motif sitting at every
integer place. A strip pattern is an infinite pattern
that runs along a line in both directions. Any line
would do but for ease we work with a horizontal
line. Consider the example of a strip pattern (see
Figure 6) made from repeating a square motif at

2A group G is called cyclic if there is an element a in G such that every element of G is basically a composed with itself finitely many
times or a−1 composed with itself finitely many times. In other words every element of G is of the form am for some integer m where |m|
represents the number of times either a or a−1 have been composed.
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equal intervals. Remember that the pattern is
infinite and continues indefinitely both to the left
and to the right.

A strip pattern has a new type of symmetry not
seen in the case of finite objects. In Figure 6 we
have marked an arrow of a certain length t (the
distance between two motifs), pointing to the
right. If we move the entire strip by a distance t
along the line to the right then we see that the
strip will occupy the same position as it did
originally. So this describes a symmetry called a
translation. We denote it by T.

For any positive integer m, we denote by the
symbol Tm the symmetry we get by moving the
strip a distance mt to the right along the line, and
by T−m the symmetry we get by moving the strip
a distance mt to the left along the line. The
do-nothing symmetry will also be thought of as a
translation symmetry in which we move by a
distance of 0. This is also denoted as T0.

Note that every strip pattern will have infinitely
many translation symmetries. Indeed, formally, a
finite object is one that does not possess a
non-trivial translation symmetry (i.e., a translation
symmetry which is not the do-nothing symmetry).

We say that two lines of reflection or two
rotocentres of a figure are of the same type if there
is a symmetry of the figure which takes one to the
other. Otherwise they are said to be of different
types.

In the above example, we see that there is only one
horizontal reflection symmetry and vertical
reflection symmetries along two different types of
lines of reflection (denoted by solid and dotted
lines). There are also 180◦ rotations in the
anti-clockwise direction about two different types of
rotocentres (denoted by red and pale blue circles).

In general for a strip pattern, the only rotational
symmetries possible are of 0◦ and 180◦. A 180◦

rotation symmetry may or may not exist. If a 180◦

rotational symmetry with a certain type of
rotocentre exists, then there will be infinitely
many rotational symmetries with that same type
of rotocentre. (In our example, the centre of each
square is a rotocentre of the red type.)

Similarly a reflection symmetry about a horizontal
line or vertical line may or may not exist. If there
is a reflection symmetry about a horizontal line,
then it is unique (i.e., there can be only one such
line). If there exists a reflection symmetry about a
vertical line of a certain type, there will be
infinitely many reflection symmetries about
vertical lines of the same type. (In our example,
there are infinitely many vertical lines of reflection
passing through the centres of the squares.)

We had seen earlier that for any planar object X,
the set Sym (X) of all symmetries of X is closed
under composition of symmetries. In this context
it might be useful to consider what symmetry we
get if a reflection is followed by a translation or
vice-versa. In general, this yields a new kind of
symmetry that is neither a reflection, nor a
rotation and not even a translation. This new
symmetry is called a glide reflection. Thus if T is
a translation symmetry and R is a reflection
symmetry of an object X, then R ∗ T and T ∗ R are
both symmetries knows as glide reflections. A
glide reflection can also be defined independently
as follows.

Consider Figure 7. The one on the left shows the
effect of a reflection followed by a translation on
the letter R. The one on the right shows the glide
reflection, which is the composition of the
reflection followed by the translation. (The
shadow R in the figure on the right shows the
intermediate position of R after undergoing a
reflection about the dotted line.)

Thus a glide reflection is defined as reflection
followed by a translation in a direction parallel to
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the line of reflection. The important fact for a
glide reflection is that the translation has to occur
in the same direction as that of the line of
reflection. A strip pattern may or may not have a
glide reflection.

It is possible to classify strip patterns on the basis
of the combinations of possible symmetries of a
strip pattern, namely, translation, horizontal
reflection, vertical reflection, 180◦ rotation and
glide reflection. All strip patterns are made up of
just these basic elements. As may be expected,
therefore, there are not too many such patterns
possible. Analysis reveals that the number of
different strip patterns is just seven.

Examples of the seven strip patterns are given in
Figures 8 (a) and 8 (b).

The arrows marked in the patterns show the glide
length, the distance a unit of the motif has to
travel before the reflection takes place. It is
possible for the glide length to be different from
the basic translation length for a strip pattern.

Note that in Type II, the basic motif consists of two
units, a standing P and an upside down P. Thus the
basic translation will be the distance between two
successive motifs and in this case we could take it to
be the distance between the two successive standing
P’s. This is different from the glide length shown by
the length of the arrow in the pattern.

Similarly in Type V, the basic motif consists of 4
units (P, reflected P, upside down P and its
reflection). Here too the glide length and the basic
translation length differ. However in Type VII,
the glide length is also the translation length.

Figure 8 (a)
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We conclude Part I of this article by giving
examples of strip patterns that can be found in the
clothes that we wear, in monuments and
contemporary buildings, in fences and balcony
railings among others. In a few cases we will
classify these. The others are left as an exercise for
the reader to undertake classification into one of
the seven types.

Figure 9 shows a hand block-printing pattern used
on cloth. Such strip patterns can be typically

found on borders of saris, shirts or kurtas,
bedsheets, curtains etc. This strip pattern has
translations, horizontal reflection, vertical
reflections, glide reflections and 180 degree
rotations. So it is of Type VII.

The next strip pattern (Figure 10) is a decorative
motif from the Humayun’s Tomb, a 16th century
monument built after the Mughal emperor
Humayun’s death in 1556. The tomb located in
the Nizammuddin area in Delhi has been restored

Figure 9: A strip pattern of Type VII

Figure 10: A strip pattern of Type III
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Figure 11: A strip pattern of Type III

Figure 12: A strip pattern of Type VI

Figure 13

Figure 14

beautifully and is well worth a visit – not just
because it has been restored beautifully, but also
from the point of view of symmetry! As it has only
translations and vertical reflections, this is a strip
pattern of Type III.

The next two strip patterns (Figure 11, Figure 12)
are decorative borders painted around a window
in the Crafts Museum in Delhi. The style of the
first painting is probably Madhubani from the
state of Bihar, and the second one is probably
done in a Patchitra style, which is a folk art form
from Orissa. The strip pattern in Figure 11 is once

again of Type III as it has only translations and
vertical reflections.

On the other hand, the strip pattern in Figure 12
is of Type VI as it has translations, horizontal
reflection and glide reflections.

Some more examples of strip patterns are given
below, taken from the world around us. We invite
the reader to classify them according to the
symmetries present. The strip patterns in
Figure 13 is an example of Kalamkari artwork
from Andhra Pradesh.
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The pattern in Figure 14 is again an example of
hand-block printing on cloth.

The next two strip patterns (Figure 15, Figure 16)
have been taken from a balcony railing and the
side railing of a bridge.

The last two strip patterns (Figure 17, Figure 18)
are borders or decorative motifs from a Buddhist
temple in Seoul and the beautiful Gyeongbokgung
Palace originally built in the 14th century and
restored now, again in Seoul.

Figure 15

Figure 16

Figure 17

Figure 18
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The Magical
World of Infinities

Part 1

To see a World in a Grain of Sand
And a Heaven in a Wild Flower,
Hold Infinity in the palm of your hand
And Eternity in an hour.

From Auguries of Innocence by William Blake

Introduction
This article and its sequel hope to take the reader on a whirlwind
tour of the infinities! For those who have never encountered these
ideas, be ready for your world to be turned upside down and your
intuition to be shot to pieces. Don’t worry, you’re not the only one
who may react violently to the ideas presented below. Reputed
mathematicians like Poincaré and Kronecker reacted with horror.
Georg Cantor, who discovered these ideas, was literally driven to
insanity because of the hostility he received, especially at the hands
of Kronecker. But before we get caught up in this story, let us
begin our journey into the world of Infinity.

Ready? Do you have your seat belts fastened? Then let us start with
the so-called Hilbert hotel (an idea introduced by the famous
German mathematician David Hilbert). The Hilbert hotel has an
infinite number of rooms, and all the rooms in the hotel are full.
Now if a new guest arrives, can you accommodate her? Some of
you may have figured it out already! Yes, move each guest to the
adjacent room, that is: ask the guest in room 1 to move to room 2,
the guest in room 2 to move to room 3, the guest in room 3 to
move to room 4, and so on. As there are infinitely many rooms in

1

Keywords: Hilbert hotel, Cantor, infinities, natural numbers, set of 
integers, set of rational numbers, one-to-one correspondence, interlacing, 
measure theory, cardinal number, cardinality
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