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Hence: PQ 2 = AP 2 + AQ 2. This is the theorem of Pythagoras applied to triangle APQ.

Fold back triangles PAQ, BQR, RCS, SDP inside, as 
before.

Now in the square PQRS standing on PQ we have 
identical triangles PAQ, BQR, RCS, SDP, and a small 
square ABCD.

Square PQRS = Triangle PAQ + Triangle QBR +
Triangle RCS + Triangle SDP + Square ABCD

= 
2

1 ab + 
2

1 ab + 
2

1 ab + 
2

1 ab + square ABCD

= 4 × 
2

1 ab + AB 2

= 2ab + (b – a)2.

Hence c 2 = 2ab + b2 + a2 – 2ab

and so c2 = a2 + b2.
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Classification of Quadrilaterals

The Four-Gon 
Family Tree
A Diagonal Connect
Classification is traditionally defined as the precinct of biologists. But classifi-

cation has great pedagogical implications — based as it is on the properties 

of the objects being classified. A look at a familiar class of polygons — the 

quadrilaterals — and how they can be reorganized in a different way.  

A Ramachandran

Quadrilaterals have traditionally been classified on the 
basis of their sides (being equal, perpendicular, paral-
lel, …) or angles (being equal, supplementary, …). Here 

we present a classification based on certain properties of their 
diagonals. In this approach, certain  connections among the 
various classes become obvious, and some types of quadrilat-
erals stand out in a new light.

Three parameters have been identified as determining various 
classes of quadrilaterals: 
1. Equality or non-equality of the diagonals
2. Perpendicularity or non-perpendicularity of the diagonals
3. Manner of intersection of the diagonals. Here four situa-

tions are possible: 
a. The diagonals bisect each other.
b. Only one diagonal is bisected by the other.
c. Neither diagonal is bisected by the other one, but both 

are divided in the same ratio.
d. Neither diagonal is bisected by the other one, and they 

divide each other in different ratios. 
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These parameters allow us to identify 16 classes of quadrilaterals as listed in Table 1. The meaning of 
the phrase ‘slant kite’ though not in common parlance should be clear.

Certain relations among these classes are obvious. Members of columns 2 and 3 are obtained from the 
corresponding members of column 4 by imposing equality and perpendicularity of diagonals, respec-
tively, while members of column 1 are obtained by imposing both of these conditions.

Sequentially joining the midpoints of the sides of any member of column 1 yields a square, of column 2 
yields a general rhombus, column 3 a general rectangle, and column 4 a general parallelogram.

Table 2 gives the cyclic/non-cyclic nature and number of reflection symmetry axes of each type. An 
interesting pattern is seen in both cases.

Quadrilaterals with equal diagonals divided in the same ratio (including the ratio 1:1) are necessarily cy-
clic, as the products of the segments formed by mutual intersection would be equal. Quadrilaterals with 
unequal diagonals divided in the same ratio and those with equal diagonals divided in unequal ratios are 
necessarily non-cyclic, as the segment products would be unequal. Quadrilaterals with unequal diago-
nals divided in different ratios could be of either type.

The quadrilateral with the maximum symmetry lies at top left, while the one with least symmetry lies at 
bottom right. A gradation in symmetry properties is seen between these extremes.

Table 1. Quadrilateral classes based on properties of the diagonals

Diagonals equal Diagonals unequal

Perpendicular Not-perpendicular Perpendicular Not-perpendicular

Both diagonals 
bisected

Square General rectangle General rhombus General parallelo-
gram

Diagonals divided 
in same ratio (not 
1:1)

Isosceles trapezium 
with perp diagonals

Isosceles trapezium General trapezium 
with perp diagonals

General trapezium

Only one diagonal 
bisected

Kite with equal di-
agonals

Slant kite with equal 
diagonals

Kite Slant kite

Diagonals divided 
in different ratios, 
neither bisected

General quadrilateral 
with equal and perp 
diagonals

General quadri-
lateral with equal 
diagonals

General quadrilateral 
with perp diagonals

General quadrilat-
eral

Diagonals equal Diagonals unequal

Perpendicular Not-perpendicular Perpendicular Not-perpendicular

Both diagonals 
bisected

Cyclic (4) Cyclic (2) Non-cyclic (2) Non-cyclic (0)

Diagonals divided 
in same ratio (not 
1:1)

Cyclic (1) Cyclic (1) Non-cyclic (0) Non-cyclic (0)

Only one diagonal 
bisected

Non-cyclic (1) Non-cyclic (0) Either (1) Either (0)

Diagonals divided 
in different ratios, 
neither bisected

Non-cyclic (0) Non-cyclic (0) Either (1) Either (0)

Table 2. Cyclic/non-cyclic nature of quadrilateral & the number of reflection symmetry axes (shown in parentheses)
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The present scheme also suggests a common formula for the areas of these figures. The area of any 
member of column 4 can be obtained from the formula A = 

2

1 d1d2 sin Θ where d1, d2 are the diagonal 
lengths and Θ the angle between the diagonals. The formula simplifies to A = 

2

1 d1d2 for column 3, A = 
2

1 d2 

sin Θ for column 2, and A = 2

1 d2 for column 1.

The general area formula A = 
2

1 d1d2 sin Θ is applicable in the case of certain other special classes of quad-
rilaterals too.

Non-convex or re-entrant quadrilaterals are those for which one of the (non-intersecting) diagonals lies 
outside the figure. the applicability of the formula to these is demonstrated in Figure 1. The computation 
shows that 

 [ABCD] = [3ABC ] + [3ADC ] = [3ABE ] − [3CBE ] + [3ADE ] − [3CDE ]

  = 
2

1 sin Θ (AE · BE – CE · BE + AE · DE – CE · DE )

  = 
2

1 sin Θ (AC · BE + AC · DE ) = 
2

1 sin Θ (AC · BD )

Reflex quadrilaterals with self-intersecting perimeters such as the ones shown in Figure 2 can be consid-
ered to have both the (non-intersecting) diagonals lying outside the figure. The applicability of the area 
formula to such figures is demonstrated in Figure 3. Here the area of the figure is the difference of the 
areas of the triangles seen, since in traversing the circuit ABCDA we go around the triangles in opposite 
senses. Hence in Figure 3, 

Fig. 1 Square brackets denote area: [3ABC] denotes area of 3ABC, etc

Fig. 2 Reflex quadrilateral: AC and BD are diagonals lying outside the reflex quadrilateral ABCDA, 
whose perimeter is self-intersecting
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 [ABCDA] = [3ABE] − [3CDE] = [3ABD] − [3CBD]

  = 
2

1 BD · h1 − 
2

1 BD · h2 = 
2

1 BD · (h1 − h2)

  = 
2

1 BD · (AF sin Θ − CF sin Θ) = 
2

1 BD  sin Θ · (AF − CF )

  = 
2

1 BD · AC  sin Θ.

In the particular case when AC || BD, the formula implies that the area is 0. This makes sense, because, 
referring to Figure 2(b), the area of quadrilateral ABCDA is: 

 [ABCDA] = [3ABE] − [3CDE]

  = ([3ABE] + [3EBD]) − ([3CDE] − [3EBD])

  = [3ABD] − [3CBD] = 0.

If one or both the diagonals just touches the other one, the figure degenerates to a triangle, and the formula 
reverts to the area formula for a triangle, A = 2

1 ab sin C (see Figure 4). The formula   2

1 AC · BD  sin Θ continues 
to remain valid.

To conclude, the above scheme integrates the various quadrilateral types normally encountered in classroom 
situations and highlights a few others. It suggests new definitions such as: A trapezium is a figure whose diago-

Fig. 3 

Fig. 4 Two examples of a degenerate quadrilateral ABCD; in (a) vertex B lies on diagonal AC,  
and in (b) vertices B and C coincide
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nals intersect each other in the same ratio. Non-convex and reflex quadrilaterals are also brought in as varia-
tions on the diagonal theme. The formula A = 2

1 d1d2  sin Θ is also shown to be the most generally applicable 
formula for quadrilaterals.
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studied physical science and mathematics at the undergraduate level, and shifted to life science 
at the postgraduate level. He has been teaching science, mathematics and geography to middle 
school students at Rishi Valley School for two decades. His other interests include the English lan-
guage and Indian music. He may be contacted at ramachandran@rishivalley.org.

Having taught for many years one would think 
that one cannot be surprised by student respons-
es anymore; one has seen it all! But I discovered 
that this is not so. I give below an instance of a 
student’s out-of-the-box thinking. During a class 
the question posed was: The sum of a two digit 
number and the number obtained by reversing 
the order of the digits is 121. Find the number, if 
the digits differ by 3.

After some explaining, I wrote this pair of equa-

tions on the board: (10x + y) + (10y +x) =121, 

x – y=3. Further processing gave: y=7, x=4. 
Therefore the answer to the question is 47.

Sheehan, a student of the class who likes to think 
independently, worked out this problem differ-
ently. I reproduce below a copy of his working.

He had worked out all the possibilities for this 
occurrence. They are not many, of course. When I 
went around looking into their work, I was taken 
aback by this approach. Later I tried to impress 
upon him the necessity of solving problems the 
‘normal’ way. The ‘board’ wanted things done in 
a particular way. But I must say that it was I who 
was impressed.

The confidence of these students is high. They 
are willing to tackle most problems without 
knowing the ‘correct’ way to a solution. A posi-
tive trait surely. But on the negative side, these 
students often block out new learning. They 
sometimes refuse to learn a method as they 
perhaps feel secure about their own capacity to 
tackle problems.

A new approach to

solving equations? by Shibnath Chakravorty

– Alfred North Whitehead (1861-1947)

“Algebra reverses the relative importance of the 
factors in ordinary language”

Courtesy: Sheehan Sista, Grade 9, Mallya Aditi International School


