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Many Ways to QED 

The Pythagorean 
Theorem
Taking note of a collective of contributors
How do I prove thee?  Can I count the ways?  A look at the wide variety of 

methods used to prove the theorem of Pythagoras.  

Not only is the theorem of Pythagoras (‘PT’ for short) the best 
known mathematical theorem of any kind, it also has the record 
of having been proved in a greater number of ways than any 
other result in mathematics, and by a huge margin: it has been 
proved in more than three hundred and fifty different ways! 
(So the relation between the PT and the rest is a bit like the 
relation between Sachin Tendulkar and the rest ….) There is 
more: though by name it is inextricably linked to one particular 
individual (Pythagoras of ancient Greece), as a geometric fact it 
was independently known in many different cultures. (See the 
article by J Shashidhar, elsewhere in this issue, for more on the 
history of the PT.) We do not know whether they proved the 
theorem and if so how they did it, but they certainly knew it 
was true!  

In this article we describe a few proofs of this great and 
important theorem.
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Statement of the PT
Here is how Euclid states it: In a right triangle, 
the square on the hypotenuse equals the sum of 
the squares on the two legs of the triangle. (‘Right 
triangle’ is a short form for ‘right-angled triangle’. 
The ‘legs’ of a right triangle are the two sides 
other than the hypotenuse.) Thus, in Figure 1(i) 
where \A is a right angle, we have: 

Square BHIC = Square ADEB + Square ACFG.

The way we state the theorem nowadays is: In a 
right triangle, the square of the hypotenuse equals 
the sum of the squares of the two legs of the tri-
angle. Note the change: ‘on’ has been replaced by 
‘of ’. Therefore: In Figure 1(ii), a2 = b2 + c2. This is not 
merely a change of language. In Euclid’s version, 
it is a statement about areas; in the latter one, it 
is a statement about lengths. Of course the two 
versions are equivalent to one another (thanks to 
the formula for area of a square), and both offer 
opportunities for generalization; but the second 
one tells us something about the structure of the 
space in which we live. Today, this is the preferred 
version.

Euclid’s proof
This has been sketched in Figure 2. The descrip-
tion given alongside gives the necessary steps, 

and we shall not add anything further here. Note 
that the reasoning is essentially geometrical, using 
congruence theorems. No algebra is used.

Bhaskara II’s proof
The proof given by Bhaskara II, who lived in the 
12th century in Ujjain, is essentially the same as 
the one described in the origami article by V S S 
Sastry elsewhere in this issue; but the triangles 
are stacked differently, as shown in Figure 3. Let 
a right 3ABC be given, with \A = 90°; let sides BC, 
AC, AB have lengths a, b, c.

The argument given in Figure 3 shows that 
(b + c)2 = 4 × (

2

1 bc) + a2, and hence that a2 = b2 + c2. 
Note that all we have done is to ‘keep accounts’: 
that is, account for the total area in two different 
ways. 

Bhaskara’s proof is a beautiful example of a ‘proof 
without words’. The phrase ‘without words’ is not 
be taken too literally; words are certainly used, 
but kept to a minimum. We shall see many more 
examples of such visual proofs in future issues of 
this magazine.

Properly speaking, we must justify certain claims 
we have made in this proof (and this, typically, 
is the case for all proofs-without-words); for 

Fig 1:
Two contrasting versions of 
Pythagoras’s theorem. 
In (i), Square BHIC =Square 
ACFG + Square ADEB;
In (ii), a2 = b2 + c2
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example: (i) why the ‘hole’ is a square with side 
a, (ii) why the entire figure is a square with side 
b + c. For this we must show that angles which 
‘look like right angles’ are indeed right angles, and 
angles which ‘look like straight angles’ are indeed 
straight angles. But these justifications are easily 
given — please do this on your own.

According to legend, Bhaskara did not offer any 
explanations (we presume therefore that he 
agreed with the philosophy of a proof without 
words); he simply drew the diagram and said 
“Behold! ” — assuming no doubt that the reader 
would be astute enough to work out the details 
mentally, after gazing for a while at the diagram! 

Garfield’s proof
The proof given by James Garfield in 1876 is of a 
similar nature. Garfield was a US Senator at the 
time he found the proof, and later (1881) became 
President of the USA. Unfortunately he fell to an 
assassin’s bullet later that same year, and died a 
slow and painful death.

Garfield’s argument is sketched in Figure 4. The 
trapezium has parallel sides of lengths b and c, 
and the perpendicular distance between them is 
b + c; its area is therefore 

2

1 (b + c)2. The two right 
triangles have area 

2

1 bc each. Hence we have:
2

1 (b + c)2 = bc + 
2

1 a2. On simplifying this we get 
a2 = b2 + c2.

Fig. 2 Euclid’s proof, which uses standard geometrical results on congruence

Fig. 3 The proof by Bhaskara II. See reference (1) for details
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A proof based on similarity
Next, we have a proof based on similarity of tri-
angles, also given by Euclid in his text Elements.

Figure 5 depicts the right triangle ABC in which
\A = 90°, with a perpendicular AD drawn from A 
to the base BC. The two angles marked u are equal, 
as are the two angles marked v. So we have the 
similarities 3ABC ~ 3DBA ~ 3DAC, and we deduce 
that 

 
, .BA

BD
CB
AB

a
c

AC
DC

BC
AC

a
b

= = = =

These imply that

 a a a ac , .BD c c DC b b b2 2

# #= = = =

Since BD + DC = a, we get

 a a ,ac b2 2

+ =

so a2 = b2 + c2.

Observe that this proof yields some additional re-
lations of interest; for example, AD2 = BD × DC, and 
BD : DC = AB 2 : AC 2.

Fig. 5  

 Fig. 6  Proof #63 from the compilation by E S Loomis (reference 3)

Fig. 4   The proof by Senator Garfield. See reference (2) for details.
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A proof based on the intersecting chords 
theorem
Next, we have a lovely proof based on the inter-
secting chord theorem (“If UV and LM are two 
chords of a circle, intersecting at a point T, then 
UT  ×  VT = LT  ×  MT ”), which is a well known result 
in circle geometry (and, importantly, its proof 
does not depend on the PT). The construction and 
proof are fully described in Figure 6.

Another proof based on the intersecting 
chords theorem
A corollary of the intersecting chords theorem is 
the following: “If from a point P outside a circle, a 
tangent PT is drawn and also a secant PQR, cutting 
the circle at Q and R, then PQ  ×  PR = PT 2.” We may 
use this to get yet another proof. The details have 
been given in Figure 7.

Are these proofs really different from 
one another? 
Yes, indeed! Euclid’s proof is about the geometric 
notion of area; it uses standard theorems of con-
gruence, and does not require any algebraic ideas 
whatever. Bhaskara’s proof too uses the notion 

of area, but requires: (i) the fact that the area of 
a rectangle with sides x and y is xy (and therefore 
that the area of a right triangle with legs x and y is 
2

1 xy, and the area of a square of side s is s2 );
(ii) the formula for the expansion of (b + c)2. Like-
wise for Garfield’s proof. Finally, the proof by simi-
larity and the two proofs based on the intersecting 
chords theorem have nothing to do with area at 
all!  — they deal with lengths, and it is purely by 
algebraic manipulations that the relation a2 = b2 + c2 
emerges.
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Reference (3) contains no less than 371 proofs of the PT, 
and 96 of these are given in reference (4)! 

 Fig. 7 Another proof based on the intersecting chords theorem

The COMMUNITY MATHEMATICS CENTRE (CoMaC for short) is housed in Rishi Valley (AP); it is one 
of the outreach sectors of the Rishi Valley Education Centre. It holds workshops in the teaching 
of mathematics and undertakes preparation of teaching materials for State Governments, schools 
and NGOs. CoMaC may be contacted at comm.math.centre@gmail.com.


