Using Fractions, Odd Squares,
Difference of Two Squares

How to Generate
Pythagorean
Triples -1

Exploring different generative methods

feature

Generating Primitive Pythagorean Triples can introduce students to
number theoretic properties, enhance logical reasoning and encourage

students to find answers to their ‘whys’.

SHAILESH SHIRALI

he relation a*+b*=c” is so familiar to us that we often
T quote it without saying what a, b, c represent! And this,

no doubt, is because the Pythagorean theorem is so well
known. We know that if g, b, ¢ are the sides of a right angled tri-
angle, with c as the hypotenuse, then a*+ b*=c?. We also know,
conversely, that if a, b, ¢ are positive numbers which satisfy this
relation, then one can construct a right angled triangle with legs
a, b and hypotenuse c. Because of this association, we
call a triple (a, b, c) of positive integers satisfying this relation a
Pythagorean triple, PT for short. But such triples have addi-
tional properties of interest that have nothing to do with their
geometric origins; they have number theoretic properties, and
we will be studying some of them in this and some follow up
articles.

The most well known PT is the triple (3, 4, 5). Since its num-
bers are coprime — i.e., there is no factor exceeding 1 which
divides all three of them — we call it ‘primitive’, and the triple
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is called a primitive Pythagorean triple or PPT
for short. In this article we explore some ways of
generating PPTs.

Note. Throughout this article, when we say ‘number’
we mean ‘positive integer’. If we have some other

meaning in mind, we will state it explicitly.

What is a ‘number theoretic’ property?
Before proceeding we must state what we mean
by a ‘number theoretic’ property. Below, we list
six such properties about numbers. On examin-
ing them you should be able to make out what is
meant by the phrase ‘number theoretic property’.
(We have not justified the statements; we urge
you to provide the proofs.)

1. The sum of two consecutive numbers is odd.

2. The sum of two consecutive odd numbers is a
multiple of 4.

3. The sum of three consecutive numbers is a
multiple of 3.

4.  An odd square leaves remainder 1 when di-
vided by 8.

5. The square of any number is either divisible by
3, or leaves remainder 1 when divided
by 3.

6.  The sum of the first n odd numbers is equal
to n’.

In contrast, here are some statements which are
true for any kind of quantity, not just for positive
integers: For any two quantities a and b we have:

a*-b*=(a-b)-(a+h),
a*-b*=(a-b)-(a*+ab+b?),
a*+b* = 2ab.

These statements are true even if a and b are not
integers. But statements (1) - (6) presented earlier
have no meaning if the numbers involved are not
integers.

Generating PPTs

We have already given(3, 4, 5) as an example of

a PPT. How do we generate more such triples?
Below we describe four ways of doing so. The first
three are presented without justification; we do
not show how we got them, but they are fun to
know! In the case of the fourth one, we derive

it in a logical way.
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Method #1: Using Odd Squares

This method is often found by students who like

to play with numbers on their own, and it is per-
haps the simplest way of generating Pythagorean
triples.

Select any odd number n>1, and write n* as a sum
of two numbers a and b which differ by 1 (here b is
the larger of the two numbers); then (n, a, b) is a
PT; indeed, it is a PPT.

Examples
o Taken=3;then n’=9=4+5,s0a=4, b=5.
The triple is (3, 4, 5).

e Taken=5;thenn?*=25=12+13,s0a=12,b=13.
The triple is (5, 12, 13).

e Taken=7;thenn’=49=24+25,s0a=24,b=25.
The triple is (7, 24, 25).

¢ Observe that each triple generated here has the
form (n,a,a+1) where 2a+1=n"

Exercises.

(1.1) Justify why this procedure yields PTs.

(1.2) Justify why these PTs are PPTs.

(1.3) Find a PPT which cannot be generated by
this method.

Method #2: Using Unit Fractions With
0dd Denominator

Of all the methods one generally sees, this one is
perhaps the strangest!

Let n be any odd number. Compute the sum
T nlﬁ and write it in the form ; where a, b are
coprime. Then (a, b, b+2) is a PPT.

Here are some PPTs generated using this method.

e Take n=1;then n+2=3, and %+%=%.

We get the PPT (4, 3, 5).

e Take n=3;then n+2=5, and %+%=%.

We get the PPT (8, 15, 17).

[u=y
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e Taken=5;thenn+2=7,and %+
We get the PPT (12, 35, 37).

e Taken=7;thenn+2=9, and %+%=%.

We get the PPT (16, 63, 65).



Exercises.

(2.1) Justify why this yields PTs.

(2.2) Explain why these PTs are PPTs.

(2.3) Find a similar method that uses the even
positive integers.

(2.4) Find a PPT which cannot be generated by
this method.

Method #3: Using Mixed Fractions

In the same way that we used unit fractions we
may also use mixed fractions. We write the follow-
ing sequence of mixed fractions:

1 2 3 4 5 6
1§' ng 37! 43' Sﬁ' 6§'

The pattern behind the sequence should be clear.
Now we write each fraction in the form % ; i.e, we
write each one as an ‘improper’ fraction. We get:

4 12 24 40 60 84

] )’ ] )

3 5 7 8 11° 13’

Examining these fractions, we see quickly that if -
is a fraction in the sequence, then (b, a, a+1) is a
PPT. So we get the following PPTs:

(3,4,5), (5,12,13), (7,24,25),
(11,60,61), (13,84,85),

(9,40,41),

.... Strangely, we have obtained the same PPTs that
we got with the first method.

Exercises.

(3.1) Justify why this yields PTs.

(3.2) Explain why it yields the same PTs that we
obtained by Method #1.

(3.3) Explain why these PTs are PPTs.

(3.4) Find a PPT which cannot be generated by
this method.

Remark

All these are ‘ad hoc’ methods; in no case do we
give any hint as to how we got the method. In con-
trast, here is a method which we actually derive.
And that is surely so much more satisfactory.

Method #4: Using the Difference of Two
Squares Formula

The equation a*+b*=c* looks more friendly when
written as a*=c*- b% because on the right side we
see a difference of two squares: an old friend!
Now if we write the equation in factorized form as

1 a*=(c-b)-(c+b)

then our chances of success look brighter. Let us
solve the equation in this form.

To make progress, let us arbitrarily put c-b=1
and explore what happens. The relation implies
that b, c are consecutive integers; and from (1) we
get a®=c+b. Since a® is a sum of two consecutive
integers, it is an odd number. So if we take an odd
square and express it as a sum of two consecutive
integers, it ought to yield a Pythagorean triple. It
does — and this is exactly our Method #1!

To put this idea into action, we select a number

n and consider the odd square
(2n+1)*=4n*+4n+ 1. We write it as a sum b+c of
two consecutive integers:

b=2n*+2n, c=2n*+2n+1.

These values correspond to the following identity:
(2n+1)*=(2n*+2n+1)* - (2n*+2n)?,

and they yield the following PT:
(2n+1, 2n*+2n, 2n* +2n+1).

Here are some PTs generated using this method
(you will see that they are all PPTs):

n 1 2 3

PPT (3,4,5) (5,12,13) (7,24, 25)
n 4 5 6

PPT (9,40,41) | (11,60,61) | (13, 84,85)

The PPTs generated by this scheme have the fea-
ture that the largest two entries are consecutive
numbers.

You will naturally want to ask: What was the need
to insist that c-=b=1? None at alll We need not
have imposed the condition. Let us examine what
happens if we change it to c- b =2; this means that
b and c differ by 2. Now we get:

a’*=2(c+b).

From this we see that ¢” is an even number; there-
fore a is even, and a=2n for some number n, giving
1-a* = 2n”. Does this yield a solution? Yes. To put

the scheme into action, we select a number n and
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write 2n’ as a sum b +c of two integers differing
by 2; we get:

b=n*-1, c=n*+1, b+c=2n%

These values correspond to the following
identity:

(2n)*=(n*+1)* - (n*- 1)},
and they yield the following PT:
(2n,n*-1, n*+1).

Here are some PTs generated this way (starting
with n=2 since n=1 yields b=0):

n 2 3 4

PPT | (4,3,5) (6,8,10) | (8,15,17)

n 5 6

PPT | (10,24,26) | (12,35,37)
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We see that when n is odd, the method yields PTs
whose numbers are all even, so they are not PPTs.
But if n is even we do get PPTs.

Observe what we have accomplished: simply by
imposing the conditions c-b=1and c-b=2, we
obtained two distinct families of PTs. It seems
reasonable to expect that by changing these condi-
tions to c-b=3, c-b=4, and so on, we should be
able to generate new families of PTs. But we leave
the exploration to you. There is much to discover
along the way, maybe some which will surprise us,
and much to prove ....

Remarks

Methods #1 -#3 yield infinitely many Pythagorean
triples, but these constitute only a small subset

of the full family of PTs. Method #4 does seem to
have the potential to yield the entire family, but
we have left the details to you.

In Part II of this article we shall examine how to
generate the entire family of PPTs in a systematic
and unified manner.



