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Why does this work?
Naturally, the question arises: Why does this work? 
Regarding the strip as 1 unit in length, the initial 
“guess pinch” can be thought of as being at 
distance
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from the left side, where e represents the initial 
error. (This could be positive or negative, depend-
ing on which side we have erred.)  Now with each 
subsequent fold the error gets halved!

For, in steps 2, 3, 4 and 5, we find that the distanc-
es of the latest pinch folds from the left side are, 
respectively (please verify this):
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The sign of the error alternates between plus and 
minus. The crucial part is that the last error is 16

1

of the original one! So each round of this proce-
dure brings down the error by a factor of 16.

Observe that we have traversed pinch marks 
which cover all the multiples of 

5

1 . 

Another question is, what would be the procedure 
for folding a paper into n equal parts, where n is a 
given odd number?

The general idea in the Fujimoto algorithm is to 
make an approximate n

1  pinch, say from the left 
hand side.  The crease line can be viewed as a frac-
tion of the paper, either from the left side or the 
right side. Since n is odd, just one of the two frac-
tions will have an even numerator. To get the next 
crease line, we fold in half that part of the strip 
from that edge of the paper which corresponds to 
the even numerator, to the latest crease line. Even-
tually we will reach a pinch mark which provides 
a new, more accurate approximation for n

1  of the 
paper, since the error gets reduced by half each 
time the paper is folded in half.

Now try on your own to get a similar method for 
folding into equal thirds.

Fujimoto’s method provides an insight into why 
clumsy origami folders manage to do a fairly good 
job of models with intricate folds!

Appendix: 
Who is Shuzo Fujimoto?

Fujimoto described this approximation method in a book written in Japanese and published in 1982 (S. Fujimoto 
and M. Nishiwaki, Sojo Suru Origami Asobi Eno Shotai (“Invitation to Creative Origami Playing”), Asahi Culture 
Center, 1982). Read what has been written about Fujimoto at this link: http://www.britishorigami.info/academic/
lister/tessel_begin.php.
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The relation a2 + b2 = c2 is so familiar to us that we often 
quote it without saying what a, b, c represent!  And this, 
no doubt, is because the Pythagorean theorem is so well 

known. We know that if a, b, c are the sides of a right angled tri-
angle, with c as the hypotenuse, then a2 + b2 = c2. We also know, 
conversely, that if a, b, c are positive numbers which satisfy this 
relation, then one can construct a right angled triangle with legs 
a, b and hypotenuse c. Because of this association, we
call a triple (a, b, c) of positive integers satisfying this relation a
Pythagorean triple, PT for short. But such triples have addi-
tional properties of interest that have nothing to do with their 
geometric origins; they have number theoretic properties, and 
we will be studying some of them in this and some follow up 
articles. 

The most well known PT is the triple (3, 4, 5). Since its num-
bers are coprime — i.e., there is no factor exceeding 1 which 
divides all three of them — we call it ‘primitive’, and the triple 
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is called a primitive Pythagorean triple or PPT 
for short. In this article we explore some ways of 
generating PPTs.

Note. Throughout this article, when we say ‘number’
we mean ‘positive integer’. If we have some other 
meaning in mind, we will state it explicitly.

What is a ‘number theoretic’ property? 
Before proceeding we must state what we mean 
by a ‘number theoretic’ property. Below, we list 
six such properties about numbers. On examin-
ing them you should be able to make out what is 
meant by the phrase ‘number theoretic property’.
(We have not justified the statements; we urge 
you to provide the proofs.)

1. The sum of two consecutive numbers is odd.
2. The sum of two consecutive odd numbers is a 

multiple of 4.
3. The sum of three consecutive numbers is a 

multiple of 3.
4. An odd square leaves remainder 1 when di-

vided by 8.
5. The square of any number is either divisible by  

3, or leaves remainder 1 when divided 
by 3.

6. The sum of the first n odd numbers is equal 
to n2. 

In contrast, here are some statements which are 
true for any kind of quantity, not just for positive 
integers: For any two quantities a and b we have:

 a2 – b2 = (a – b) · (a + b),

 a3 – b3 = (a – b) · (a2 + ab + b2),

 a2 + b2 ≥ 2ab.

These statements are true even if a and b are not 
integers. But statements (1) – (6) presented earlier 
have no meaning if the numbers involved are not 
integers.

Generating PPTs
We have already given(3, 4, 5) as an example of 
a PPT. How do we generate more such triples?  
Below we describe four ways of doing so. The first 
three are presented without justification; we do 
not show how we got them, but they are fun to 
know!  In the case of the fourth one, we derive 
it in a logical way.

Method #1: Using Odd Squares
This method is often found by students who like 
to play with numbers on their own, and it is per-
haps the simplest way of generating Pythagorean 
triples. 

Select any odd number n > 1, and write n2 as a sum 
of two numbers a and b which differ by 1 (here b is 
the larger of the two numbers); then (n, a, b) is a  
PT; indeed, it is a PPT. 

Examples
• Take n = 3; then n2 = 9 = 4 + 5, so a = 4, b = 5. 

The triple is (3, 4, 5).

• Take n = 5; then n2 = 25 = 12 + 13, so a = 12, b = 13.
The triple is (5, 12, 13).

• Take n = 7; then n2 = 49 = 24 + 25, so a = 24, b = 25.
The triple is (7, 24, 25).

• Observe that each triple generated here has the 
form (n, a, a + 1) where 2a + 1 = n2.

Exercises.
(1.1) Justify why this procedure yields PTs.  
(1.2) Justify why these PTs are PPTs.  
(1.3) Find a PPT which cannot be generated by  
 this method.

Method #2: Using Unit Fractions With 
Odd Denominator
Of all the methods one generally sees, this one is 
perhaps the strangest!  

Let n be any odd number. Compute the sum 
n n
1

2

1
+

+  and write it in the form b
a

 
where a, b  are 

coprime. Then (a, b, b+2) is a PPT.

Here are some PPTs generated using this method.

• Take n = 1; then n + 2 = 3, and 
1

1

3

1

3

4
+ = .

 We get the PPT (4, 3, 5).

• Take n = 3; then n + 2 = 5, and 
3

1

5

1
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8
+ = .

 We get the PPT (8, 15, 17).

• Take n = 5; then n + 2 = 7, and 
5

1

7

1

35

12
+ = .

 We get the PPT (12, 35, 37).

• Take n = 7; then n + 2 = 9, and 
7

1

9

1

63

16
+ = .

 We get the PPT (16, 63, 65).
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Exercises.
(2.1) Justify why this yields PTs.  
(2.2) Explain why these PTs are PPTs.  
(2.3) Find a similar method that uses the even  
 positive integers.  
(2.4) Find a PPT which cannot be generated by  
 this method.

Method #3: Using Mixed Fractions
In the same way that we used unit fractions we 
may also use mixed fractions. We write the follow-
ing sequence of mixed fractions: 

, , , , , ,1 2 3 4 5 6 ....
3

1

5

2

7

3

9

4

11

5

13

6

The pattern behind the sequence should be clear. 
Now we write each fraction in the form b

a ; i.e., we 
write each one as an ‘improper’ fraction. We get: 

, , , , , , ....
3

4

5

12

7

24

8

40

11

60

13

84

Examining these fractions, we see quickly that if b
a  

is a fraction in the sequence, then (b,  a,  a + 1) is a 
PPT. So we get the following PPTs: 

(3, 4, 5),    (5, 12, 13),    (7, 24, 25),    (9, 40, 41),    
(11, 60, 61),    (13, 84, 85),

…. Strangely, we have obtained the same PPTs that 
we got with the first method.

Exercises.
(3.1) Justify why this yields PTs.  
(3.2) Explain why it yields the same PTs that we  
 obtained by Method #1.  
(3.3) Explain why these PTs are PPTs.  
(3.4) Find a PPT which cannot be generated by  
 this method.

Remark
All these are ‘ad hoc’ methods; in no case do we 
give any hint as to how we got the method. In con-
trast, here is a method which we actually derive. 
And that is surely so much more satisfactory.

Method #4: Using the Difference of Two 
Squares Formula
The equation a2 + b2 = c2 looks more friendly when 
written as a2 = c2 − b2, because on the right side we 
see a difference of two squares: an old friend!   
Now if we write the equation in factorized form as

(1) a2 = (c – b) · (c + b)

then our chances of success look brighter. Let us 
solve the equation in this form.

To make progress, let us arbitrarily put c − b = 1 
and explore what happens. The relation implies 
that b,  c are consecutive integers; and from (1) we 
get a2  = c + b. Since a2  is a sum of two consecutive 
integers, it is an odd number. So if we take an odd 
square and express it as a sum of two consecutive 
integers, it ought to yield a Pythagorean triple. It 
does — and this is exactly our Method #1! 

To put this idea into action, we select a number 
n and consider the odd square
(2n + 1)2 = 4n2 + 4n + 1. We write it as a sum b + c of 
two consecutive integers: 

 b = 2n2 + 2n, c = 2n2  + 2n + 1.

These values correspond to the following identity:

 (2n + 1)2  = (2n2 + 2n + 1)2  − (2n2 + 2n)2 , 

and they yield the following PT: 

 (2n + 1, 2n2 + 2n,  2n2 + 2n + 1) .

Here are some PTs generated using this method 
(you will see that they are all PPTs): 

The PPTs generated by this scheme have the fea-
ture that the largest two entries are consecutive 
numbers. 

You will naturally want to ask: What was the need 
to insist that c − b = 1?  None at all!  We need not 
have imposed the condition. Let us examine what 
happens if we change it to c − b = 2; this means that 
b and c differ by 2. Now we get: 

a2 = 2(c + b).

From this we see that a2 is an even number; there-
fore a is even, and a=2n for some number n, giving 
2

1 a2 = 2n2. Does this yield a solution? Yes. To put 
the scheme into action, we select a number n and 

n 1 2 3

PPT (3, 4, 5) (5, 12, 13) (7, 24, 25)

n

PPT

4

(9, 40, 41)

5

(11, 60, 61)

6

(13, 84, 85)
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write 2n2 as a sum b + c of two integers differing 
by 2; we get: 

 b = n2 − 1,   c = n2 + 1,   b + c = 2n2.

These values correspond to the following 
identity:

 (2n)2 = (n2 + 1)2 − (n2 − 1)2,

and they yield the following PT:

 (2n, n2 – 1, n2 + 1).

Here are some PTs generated this way (starting 
with n = 2 since n = 1 yields b = 0):

We see that when n is odd, the method yields PTs 
whose numbers are all even, so they are not PPTs. 
But if n is even we do get PPTs.

Observe what we have accomplished: simply by 
imposing the conditions c − b = 1 and c − b = 2, we 
obtained two distinct families of PTs. It seems 
reasonable to expect that by changing these condi-
tions to c − b = 3, c − b = 4, and so on, we should be 
able to generate new families of PTs. But we leave 
the exploration to you. There is much to discover 
along the way, maybe some which will surprise us, 
and much to prove ….

Remarks
Methods #1 – #3 yield infinitely many Pythagorean 
triples, but these constitute only a small subset 
of the full family of PTs. Method #4 does seem to 
have the potential to yield the entire family, but 
we have left the details to you.

In Part II of this article we shall examine how to 
generate the entire family of PPTs in a systematic 
and unified manner.
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