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Complete Family of
Pythagorean Triples
From Random to Systematic Generation

In Part I of this article we presented a few methods for generating Primitive
Pythagorean Triples (PPTs). You will recall that they were all ‘piece meal’ in
character. Now we present two more approaches which offer complete
solutions to the PPT problem. Both are based on straightforward reasoning
and simple algebra. And no PPT is left out: we capture the complete family in
each case.

C ⊗ MαC

At the start we recall the definition: a Pythagorean triple is
a triple (a, b, c) of positive integers such that a2 + b2 = c2.
The triple is called ‘primitive’ if a, b, c have no common

divisor exceeding 1; we call such a triple a ‘Primitive
Pythagorean Triple’ (PPT for short). For example, (5, 12, 13) is a
PPT, while (6, 8, 10) is a Pythagorean triple which is not a PPT.

Remark.Wemake the following number theoretic observation
about PTs which are not PPTs. If two numbers in a PT share a
common factor exceeding 1, this factor divides the third number as
well. For example, (9, 12, 15) is a PT, and its numbers 12 and 15
share the factor 3; this factor divides 9 as well. To see why this
claim of divisibility will always be true, suppose that in the PT
(a, b, c), both b and c are divisible by some integer k. Then k2
divides both b2 and c2, hence k2 divides a2, since c2 − b2 = a2;
hence k divides a as well. This logic works no matter which two
of a, b, c are divisible by a common factor. Hence, to check that a
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PT is aPPT, it is enough topick any twoof its entries
and check that they are coprime; the nice thing is
that it does not matter which two entries we
pick!

Generating the Full Family of PPTs By
Solving Equations
Let (a, b, c) represent a PPT. We write its defining
relation a2 + b2 = c2 in the form

(a
c

)2
+

(
b
c

)2

= 1. (1)

Let u = a/c and v = b/c. Then u and v are positive
rational numbers, and they have the same
denominator (because no ‘cancellation’ can take
place in either of the two fractions). Also, they lie
between 0 and 1, and they satisfy the equation
u2 + v2 = 1.

To solve this equation we transpose the terms and
write it in the form u2 = 1− v2. In this form it
immediately looks more familiar, because we are
able to make use of the well known ‘difference of
two squares’ factor formula. Write the equation
u2 = 1− v2 as

u · u = (1− v) · (1+ v), ∴ u
1− v

= 1+ v
u

. (2)

Denote the common value of u/(1− v) and
(1+ v)/u by t (in terms of the original quantities
a, b, cwe have t = a/(c− b); note that t is a
positive rational number, for it is the ratio of two
positive rational numbers):

u
1− v

= t,
1+ v
u

= t. (3)

By cross-multiplication and transposing terms, we
obtain a pair of simultaneous equations in u and v:

{
u+ tv = t,
tu− v = 1. (4)

Treating t as a fixed quantity, we solve for u and v
in the usual way (we do not give the steps here;
please check the answerwehavegiven);weobtain:

u = 2t
t2 + 1

, v = t2 − 1
t2 + 1

. (5)

Recall that t is a positive rational number. Let
t = m/nwherem and n are positive, coprime

integers. Since u = a/c and v = b/cwe get, by
substitution:

a
c

= 2 ·m/n(
m2/n2

) + 1
= 2m n
m2 + n2

,

b
c

=
(
m2/n2

) − 1(
m2/n2

) + 1
= m2 − n2

m2 + n2
.

Hence:

a : b : c = 2m n : m2 − n2 : m2 + n2. (6)

It is easy to verify that if a, b, c satisfy these ratios
then they satisfy the Pythagorean relation, because
of the identity (2m n)2 + (m2 − n2)2 = (m2 + n2)2.
So: (2m n, m2 − n2, m2 + n2) is a PT for every pair
of coprime integers m, n with m > n.

Note that we only said ‘PT’, not ‘PPT’ — it could
happen that the triple is a PT but not a PPT. Here
are some examples of both kinds:

• (m, n) = (8, 3) yields the triple (48, 55, 73)
which is a PPT.

• (m, n) = (7, 3) yields the triple (42, 40, 58)
which is not a PPT as all its numbers are even.
But note that we can recover a PPT from it by
dividing all the numbers by their gcd which
happens to be 2; we get the PPT (21, 20, 29).

• (m, n) = (5, 3) yields the triple (30, 16, 34)
which is not a PPT but yields the PPT
(15, 8, 17) on division by 2.

So (m, n) = (8, 3) yields a PPT whereas
(m, n) = (7, 3) or (5, 3) do not. If you experiment
with various coprime pairs (m, n), and we urge
you to do so, you will find that you get a PPT
precisely when m and n have opposite parity (i.e.,
when one of them is odd, and the other one even;
this may be expressed compactly by writing:
m+ n is odd). Please experiment on your own and
confirm this finding.

How do we prove this? The condition is clearly
needed; for, ifm, n have the same parity (which
means in our context that they are both odd, as
they are supposed to be coprime and so cannot
both be even), then 2m n,m2 − n2 andm2 + n2 will
all be even numbers.

We now prove that ifm and n are coprime and
have opposite parity, then 2m n,m2 − n2 and
m2 + n2 are coprime. For this, it is enough if we
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show thatm2 − n2 andm2 + n2 are coprime.
(Recall the remark made at the start to see why.)
Let k denote the gcd ofm2 − n2 andm2 + n2. We
present the proof that k = 1 as follows.

• Sincem and n are coprime, so too arem2 and n2.
• Since k divides both the numbersm2 − n2 and
m2 + n2, it divides their sum (which is 2m2) as
well as their difference (which is 2n2); so k
divides both 2m2 and 2n2.

• Sincem and n have opposite parity,m2 and n2
have opposite parity. Hencem2 + n2 and
m2 − n2 are odd, and k, being their gcd, is odd.

• Since k divides 2m2 and 2n2, and k is odd, it
must be that k divides bothm2 and n2.

• Butm2 and n2 are coprime. Hence k = 1.

Thusm2 − n2 andm2 + n2 are coprime, as claimed,
and the PT is a PPT. We conclude: If m, n are
positive coprime integers of opposite parity, and

a = 2m n, b = m2 − n2, c = m2 + n2, (7)

then (a, b, c) is a PPT. Table 1 lists some PPTs
along with their (m, n) pairs.

A stronger claim
We can make a stronger statement: The above
scheme generates every possible PPT (a, b, c) in
which a is even and b, c are odd. Let us show why.

Let (a, b, c) be a PPT in which a is even, and b, c
are odd. Let the fraction t = a/(c− b) be written
in its simplest form asm/n (som, n are coprime).
Working as shown above, we find that
a : b : c = 2m n : m2 − n2 : m2 + n2. We now show
thatm, n have opposite parity. Suppose thatm, n
are both odd (obviously, they cannot both be
even). Then 2m n andm2 + n2 are both of the form
2× an odd number, whereasm2 − n2 is a multiple
of 4. Dividing through by 2we find that it is b rather
than awhich is an even number. However we had
supposed that a is even and not b. Hence it cannot
be thatm, n are both odd. So they must have
opposite parity. But ifm, n are coprime and have
opposite parity, then 2m n,m2 − n2 andm2 + n2

are coprime; we had shown this earlier. Now from
the equalities a : b : c = 2m n : m2 − n2 : m2 + n2

and the fact that a, b, c are coprime as well as
2m n,m2 − n2,m2 + n2, we can conclude that
(a, b, c) = (2m n,m2 − n2,m2 + n2), as required.

Example: Consider the PPT
(a, b, c) = (48, 55, 73). Here
t = a/(c− b) = 48/18 = 8/3; so we takem = 8
and n = 3. Now check that (m, n) = (8, 3)
generates the PPT (48, 55, 73).

A number theoretic approach
To round off this discussion we shall derive the
formula (7) in a completely different way, number
theoretic in flavour. The key principle we use is
the following proposition.

Proposition. If r and s are coprime positive
integers such that rs is a perfect square, then both r
and s are perfect squares.

For example, the product of the coprime numbers
4 and 9 is a perfect square, and each of these
numbers is a perfect square. We invite you to
prove the proposition.

Let (a, b, c) be a PPT in which a is even (and
therefore both b and c are odd). From the relation
a2 + b2 = c2 we get a2 = c2 − b2 = (c+ b)(c− b).
We write this relation as follows:

(a
2

)2
= c+ b

2
· c− b

2
. (8)

Since a, c+ b and c− b are even numbers, the
quantities 1

2a,
1
2 (c+ b) and 1

2 (c− b) are integers.
We claim that 12 (c+ b) and 1

2 (c− b) are coprime.
To see why, suppose that d is a common divisor of
1
2 (c+ b) and 1

2 (c− b); then dmust divide their
sum (= c) as well their difference (= b). Hence d
divides c as well as b. But we know that b and c are
coprime. Hence d = 1, and 1

2 (c+ b) and 1
2 (c− b)

too are coprime.

From (8) we see that the product of the coprime
numbers 1

2 (c+ b) and 1
2 (c− b) is a perfect square.

Hence each of them is a perfect square! Let
1
2 (c+ b) = m2 and 1

2 (c− b) = n2. By addition and
subtraction we get c = m2 + n2 and b = m2 − n2.
From (8) we get a = 2m n. Hence there exist
coprime integersm and n such that
(a, b, c) = (2m n,m2 − n2,m2 + n2).

We illustrate this step with an example. Take the
PPT (a, b, c) = (48, 55, 73) in which a is even, and
b and c are odd, as required. For this PPT we have:
1
2 (c+ b) = 1

2 (73+ 55) = 64 and
1
2 (c− b) = 1

2 (73− 55) = 9. Observe that 12 (c+ b)
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Table 1. A list of some (m, n) pairs and the PPTs they yield.

m n 2m n m2 − n2 m2 + n2

2 1 3 4 5
3 2 12 5 13
4 1 8 15 17
4 3 24 7 25
5 2 20 21 29
5 4 40 9 41
6 1 12 35 37
6 5 60 11 61
7 2 28 45 53
7 4 56 33 65
7 6 84 13 85
8 1 16 63 65
8 3 48 55 73
8 5 80 39 89
8 7 112 15 113

m n 2m n m2 − n2 m2 + n2

9 2 36 77 85
9 4 72 65 97
9 8 144 17 145
10 1 20 99 101
10 3 60 91 109
10 7 140 51 149
10 9 180 19 181
11 2 44 117 125
11 4 88 105 137
11 6 132 85 157
11 8 176 57 185
11 10 220 21 221
12 1 24 143 145
12 5 120 119 169
12 7 168 95 193
12 11 264 23 265

and 1
2 (c− b) are perfect squares. Hence

m = √
64 = 8 and n = √

9 = 3. Please check that
by using these values ofm, n in (7) we get the
same PPT with which we started, (48, 55, 73).

It remains to show thatm, n have opposite parity.
But we leave the task to you.

Remark. The approaches we have presented
above are only two of many different ways of

tackling the Pythagorean equation.
Here are some other directions we could have
taken: (i) the double angle formulas of
trigonometry, (ii) complex numbers,
(iii) coordinate geometry and quadratic equations.
The reassuring thing is that all these different
approaches give exactly the same general result.
We shall come back to some of these approaches
later.
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