
105Azim Premji University At Right Angles, July 2018

Te
ch
Sp
ac
e

Keywords: cellular automata, grids, colour, state, neighbouring, rule,
pattern, generation, iteration

The Totalistic
Approach

The topic of cellular automata has many interesting and wide
ranging applications to real life problems emerging from areas
such as image processing, cryptography, neural networks,
developing electronic devices and modelling biological systems. In
fact cellular automata can be a powerful tool for modelling many
kinds of systems. In the March 2018 issue of At Right Angles
we had introduced the basic ideas which form the foundation of
the Elementary Cellular Automata (ECA) as defined by Stephen
Wolfram. The reader is urged to go through the article before
reading this.

The topic of Cellular Automata lends itself to interesting
investigations which are well within the reach of high school
students. We had illustrated the simple and yet powerful ideas
in the previous article where we had described and analysed the
behaviour of the 256 ECAs. In this article we shall provide a brief
recap for the first time reader before moving on to the concept of
Totalistic Cellular Automata.

Briefly defined, a cellular automaton is a collection of cells on a
grid of a specified shape that evolves through discrete time steps
according to a set of rules based on the state (or color) of the
neighbouring cells. Cellular Automata may be one, two or three –
dimensional. In this article and in the earlier one we have limited
ourselves to exploring the one dimensional cellular automata
on a grid of square cells where each row of the grid represents a
generation or an iteration of the automata.

JONAKI B GHOSH &
ROHIT ADSULE

One Dimensional Cellular Automata:

106 Azim Premji University At Right Angles, July 2018

The defining characteristics of a cellular automaton are

i. A grid of cells

ii. Each cell has a state – dead or alive. Cells which are alive may be coloured black or numbered 1 and
cells which are dead may be numbered 0 and are white.

iii. Each cell in the grid has a neighbourhood. A neighbourhood of a given cell is a set of cells which are
adjacent to it. This may be chosen in various ways. E.g., if we consider a linear grid of square cells,
then the neighbourhood of each cell will be the two adjacent cells – one to its left and the other to its
right.

iv. Finally every cellular automaton must have a defining rule based on which it grows and evolves in
discrete time steps. For example, in a square grid, each row of cells may be considered as a separate
generation of cells. Thus the first row is the initial generation (or generation 0) where each cell has a
state (0 or 1). The state of each cell in the second row must be a function of its neighbouring cells in
the row above it (that is the initial row). This may be written as

 (Cell statet) = f(Neighbouring Cell statet -1)

To begin with let us consider a linear grid of 8 cells where every cell has state 0 except the 5th cell which
has a state 1.

One Dimensional Cellular Automata: The Totalistic Approach

The topic of cellular automata has many interesting and wide ranging applications to real life
problems emerging from areas such as image processing, cryptography, neural networks,
developing electronic devices to modelling biological systems. In fact cellular automata can
be a powerful tool for modelling many kinds of systems. In the March 2018 issue of At Right
Angles we had introduced the basic ideas which form the foundation of the Elementary
Cellular Automata (ECA) as defined by Stephen Wolfram. The reader is urged to go through
the article before reading this.

The topic of Cellular Automata lends itself to interesting investigations which are well within
the reach of high school students. We had illustrated the simple and yet powerful ideas in the
previous article where we had described and analysed the behaviour of the 256 ECAs. In this
article we shall provide a brief recap for the first time reader before moving on to the concept
of Totalistic Cellular Automata.

Briefly defined, a cellular automaton is a collection of cells on a grid of a specified shape that
evolves through discrete time steps according to a set of rules based on the state (or color) of
the neighbouring cells. Cellular Automata may be one, two or three – dimensional. In this
article and in the earlier one we have limited ourselves to exploring the one dimensional
cellular automata on a grid of square cells where each row of the grid represents a generation
or an iteration of the automata.

The defining characteristics of a cellular automaton are

(i) A grid of cells
(ii) Each cell has a state – dead or alive. Cells which are alive may be coloured black

or numbered 1 and cells which are dead may be numbered 0 and are white.
(iii) Each cell in the grid has a neighbourhood. A neighbourhood of a given cell is a

set of cells which are adjacent to it. This may be chosen in various ways. E.g if we
consider a linear grid of square cells, then the neighbourhood of each cell will be
the two adjacent cells – one to its left and the other to its right.

(iv) Finally every cellular automaton must have a defining rule based on which it
grows and evolves in discrete time steps. For example, in a square grid, each row
of cells may be considered as a separate generation of cells. Thus the first row is
the initial generation (or generation 0) where each cell has a state (0 or 1). The
state of each cell in the second row must be a function of its neighboring cells in
the row above it (that is the initial row). This may be written as

 (Cell statet) = f(Neighboring Cell statet -1)

To begin with let us consider a linear grid of 8 cells where every cell has state 0 except the 5th
cell which has a state 1.

Figure 1 A linear grid of 8 cells where the 5th cell is a live cell.

Figure 1. A linear grid of 8 cells where the 5th cell is a live cell.

This linear grid of square cells will be referred to as generation 0 (or row 0). The states of cells in
generation 1(that is row 1) will be determined by the neighbourhood of each cell in the row 0 which
comprises of the three cells just above it. Clearly the states of these three cells may be any one of the
following

000 001 010 100 011 101 110 111

The fact that in any three – cell neighbourhood, there are three cells each with state value either 0 or 1
implies that there are 23 = 8 ways of colouring these cells. Thus there are 8 neighbourhood configurations
described by the triples of 0’s and 1’s as shown above. However conventionally, while defining an ECA,
these neighbourhoods are taken in the following specific order.

111 110 101 100 011 010 001 000

Each of these configurations will determine the state of the middle cell of the three cells just below it in
the next row, which may again be either 0 or 1. However the state of the leftmost corner cell in row 1
will be determined by the state of the cell just above it in row 0, its right neighbour and the last cell in
row 0. Similarly, the state of the rightmost corner cell in row 1 will be determined by the state of the cell
just above it in row 0, its left neighbour and the first cell in row 0.

107Azim Premji University At Right Angles, July 2018

Let us now arbitrarily assign 0’s and 1’s to all 8 neighbourhood configurations as follows

111 110 101 100 011 010 001 000

0 0 0 1 1 1 1 0

Pictorially this may be represented as

This linear grid of square cells will be referred to as generation 0 (or row 0). The states of
cells in generation 1(that is row 1) will be determined by the neighborhood of each cell in
the row 0 which comprises of the three cells just above it. Clearly the states of these three
cells may be any one of the following

000 001 010 100 011 101 110 111

The fact that in any three – cell neighbourhood, there are three cells each with state value
either 0 or 1 implies that there are 23 = 8 ways of colouring these cells. Thus there are 8
neighbourhood configurations described by the triples of 0’s and 1’s as shown above.
However conventionally, while defining an ECA, these neighbourhoods are taken in the
following specific order.

111 110 101 100 011 010 001 000

Each of these configurations will determine the state of the middle cell of the three cells just
below it in the next row, which may again be either 0 or 1. However the state of the leftmost
corner cell in row 1 will be determined by the state of the cell just above it in row 0, its right
neighbour and the last cell in row 0. Similarly, the state of the rightmost corner cell in row 1
will be determined by the state of the cell just above it in row 0, its left neighbour and the
first cell in row 0.

Let us now arbitrarily assign 0’s and 1’s to all 8 neighbourhood configurations as follows

111 110 101 100 011 010 001 000

0 0 0 1 1 1 1 0

Pictorially this may be represented as

Figure 2 A rule set for a one-dimensional cellular automaton

This arbitrary assignment (also known as the rule set) will be the defining rule which will
determine how this particular automaton will evolve. Note that this defining rule 00011110
may be treated as a binary number whose decimal representation may be obtained as follows

0 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 0 × 20 = 30

This kind of a rule set generates an elementary cellular automaton. The ECA which evolves
from this rule set is referred to as Rule 30. However a different assignment of 0’s and 1’s
would lead to a different rule set and a different ECA. Since each of the 8 groups of three
cells may be assigned 0 or 1, this leads to 28 = 256 possible assignments. Thus, in all, there
are 256 ECA rules.

Figure 2. A rule set for a one-dimensional cellular automaton

This arbitrary assignment (also known as the rule set) will be the defining rule which will determine how
this particular automaton will evolve. Note that this defining rule 00011110 may be treated as a binary
number whose decimal representation may be obtained as follows

0 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 0 × 20 = 30

This kind of a rule set generates an elementary cellular automaton. The ECA which evolves from this rule
set is referred to as Rule 30. However a different assignment of 0’s and 1’s would lead to a different rule
set and a different ECA. Since each of the 8 groups of three cells may be assigned 0 or 1, this leads to 28
= 256 possible assignments. Thus, in all, there are 256 ECA rules.

In our previous article we had used Mathematica, a powerful Computer Algebra System and NICO an
open source software to explore the 256 ECAs. Both Mathematica and NICO were used to obtain the
graphic (pictorial) representations of all the 256 ECAs. We observed the evolutionary pattern of each
ECA through the first 100 iterations and categorised the ECAs into specific classes based on the patterns
manifested by them.

A Totalistic Cellular Automaton
In this article we shall focus on the notion of generating a cellular automaton based on the totalistic
approach. A totalistic cellular automaton is a cellular automaton in which the rules depend only on the
total (or equivalently, the average) of the values of the cells in a neighbourhood. Wolfram introduced
this idea in 1983. Like an ECA, the evolution of a one-dimensional totalistic cellular automaton can be
completely described by a rule specifying the state a given cell will have in the next generation based on
the sum of the values of the three cells consisting of the cell just above it in the grid, the one to its left and
the one to its right.

108 Azim Premji University At Right Angles, July 2018

Let us consider the case of a three cell neighbourhood (as described in the earlier section) where each cell
has a value of 0 or 1.

In our previous article we had used Mathematica, a powerful Computer Algebra System and
NICO an open source software to explore the 256 ECAs. Both Mathematica and NICO were
used to obtain the graphic (pictorial) representations of all the 256 ECAs. We observed the
evolutionary pattern of each ECA through the first 100 iterations and categorised the ECAs
into specific classes based on the patterns manifested by them.

A Totalistic Cellular Automaton

In this article we shall focus on the notion of generating a cellular automaton based on the
totalistic approach. A totalistic cellular automaton is a cellular automaton in which the rules
depend only on the total (or equivalently, the average) of the values of the cells in a
neighborhood. Wolfram introduced this idea in 1983. Like an ECA, the evolution of a one-
dimensional totalistic cellular automaton can be completely described by a rule specifying the
state a given cell will have in the next generation based on the sum of the values of the three
cells consisting of the cell just above it in the grid, the one to its left and the one to its right.

Let us consider the case of a three cell neighbourhood (as described in the earlier section)
where each cell has a value of 0 or 1.

Figure 3 A three- cell neighbourhood

Note that each neighbourhood of three cells will have a total value of 0 when all the three
cells have value 0 as shown.

Figure 4 A three cell neighbourhood where all cells have state 0.

The total value will be 1 when one of the three cells has value 1 and the other two have value
0. This can happen in 3𝐶𝐶1 = 3 ways.

0 1

0 1

0 1

 0

0

0

Figure 3. A three- cell neighbourhood

Note that each neighbourhood of three cells will have a total value of 0 when all the three cells have value
0 as shown.

In our previous article we had used Mathematica, a powerful Computer Algebra System and
NICO an open source software to explore the 256 ECAs. Both Mathematica and NICO were
used to obtain the graphic (pictorial) representations of all the 256 ECAs. We observed the
evolutionary pattern of each ECA through the first 100 iterations and categorised the ECAs
into specific classes based on the patterns manifested by them.

A Totalistic Cellular Automaton

In this article we shall focus on the notion of generating a cellular automaton based on the
totalistic approach. A totalistic cellular automaton is a cellular automaton in which the rules
depend only on the total (or equivalently, the average) of the values of the cells in a
neighborhood. Wolfram introduced this idea in 1983. Like an ECA, the evolution of a one-
dimensional totalistic cellular automaton can be completely described by a rule specifying the
state a given cell will have in the next generation based on the sum of the values of the three
cells consisting of the cell just above it in the grid, the one to its left and the one to its right.

Let us consider the case of a three cell neighbourhood (as described in the earlier section)
where each cell has a value of 0 or 1.

Figure 3 A three- cell neighbourhood

Note that each neighbourhood of three cells will have a total value of 0 when all the three
cells have value 0 as shown.

Figure 4 A three cell neighbourhood where all cells have state 0.

The total value will be 1 when one of the three cells has value 1 and the other two have value
0. This can happen in 3𝐶𝐶1 = 3 ways.

0 1

0 1

0 1

 0

0

0

Figure 4. A three cell neighbourhood where all cells have state 0.

The total value will be 1 when one of the three cells has value 1 and the other two have value 0. This can
happen in 3C1 = 3 ways.

Figure 5 Three – cell neighbourhoods with total value equal to 1.

Similarly for a total value of 2, two out of the three cells must have value 1 which can happen
in 3𝐶𝐶2 = 3 ways.

Figure 6 Three – cell neighbourhoods with total value equal to 2.

Finally the total value of 3 occurs when all cells have value 1 and this can occur in only 1
way.

Figure 7 A three - cell neighbourhood with total value equal to 3.

Thus while we had 23 = 8 neighbourhood possibilities in the ECAs, here we have only 4
neighbourhood possibilities – those with values 0, 1, 2 and 3. Further, a neighbourhood total
of 0 may be assigned to a cell numbered 0 or 1. Similarly neighbourhood totals of 1, 2 and 3
can be also assigned to either 0 or 1. Thus there are only 24 = 16 possible totalistic cellular
automata (with three cell neighbourhoods) whereas there were 28 = 256 ECAs! The totalistic
approach considerably reduces the number of possible automata.

0

0

1

1

0

0

0

1

0

0

1

1

1

0

1

1

1

0

 1

1

1

Figure 5. Three – cell neighbourhoods with total value equal to 1.

Similarly for a total value of 2, two out of the three cells must have value 1 which can happen in 3C2 = 3
ways.

Figure 5 Three – cell neighbourhoods with total value equal to 1.

Similarly for a total value of 2, two out of the three cells must have value 1 which can happen
in 3𝐶𝐶2 = 3 ways.

Figure 6 Three – cell neighbourhoods with total value equal to 2.

Finally the total value of 3 occurs when all cells have value 1 and this can occur in only 1
way.

Figure 7 A three - cell neighbourhood with total value equal to 3.

Thus while we had 23 = 8 neighbourhood possibilities in the ECAs, here we have only 4
neighbourhood possibilities – those with values 0, 1, 2 and 3. Further, a neighbourhood total
of 0 may be assigned to a cell numbered 0 or 1. Similarly neighbourhood totals of 1, 2 and 3
can be also assigned to either 0 or 1. Thus there are only 24 = 16 possible totalistic cellular
automata (with three cell neighbourhoods) whereas there were 28 = 256 ECAs! The totalistic
approach considerably reduces the number of possible automata.

0

0

1

1

0

0

0

1

0

0

1

1

1

0

1

1

1

0

 1

1

1

Figure 6. Three – cell neighbourhoods with total value equal to 2.

109Azim Premji University At Right Angles, July 2018

Finally the total value of 3 occurs when all cells have value 1 and this can occur in only 1 way.

Figure 5 Three – cell neighbourhoods with total value equal to 1.

Similarly for a total value of 2, two out of the three cells must have value 1 which can happen
in 3𝐶𝐶2 = 3 ways.

Figure 6 Three – cell neighbourhoods with total value equal to 2.

Finally the total value of 3 occurs when all cells have value 1 and this can occur in only 1
way.

Figure 7 A three - cell neighbourhood with total value equal to 3.

Thus while we had 23 = 8 neighbourhood possibilities in the ECAs, here we have only 4
neighbourhood possibilities – those with values 0, 1, 2 and 3. Further, a neighbourhood total
of 0 may be assigned to a cell numbered 0 or 1. Similarly neighbourhood totals of 1, 2 and 3
can be also assigned to either 0 or 1. Thus there are only 24 = 16 possible totalistic cellular
automata (with three cell neighbourhoods) whereas there were 28 = 256 ECAs! The totalistic
approach considerably reduces the number of possible automata.

0

0

1

1

0

0

0

1

0

0

1

1

1

0

1

1

1

0

 1

1

1

Figure 7. A three - cell neighbourhood with total value equal to 3.

Thus while we had 23 = 8 neighbourhood possibilities in the ECAs, here we have only 4 neighbourhood
possibilities – those with values 0, 1, 2 and 3. Further, a neighbourhood total of 0 may be assigned to
a cell numbered 0 or 1. Similarly neighbourhood totals of 1, 2 and 3 can be also assigned to either 0
or 1. Thus there are only 24 = 16 possible totalistic cellular automata (with three cell neighbourhoods)
whereas there were 28 = 256 ECAs! The totalistic approach considerably reduces the number of possible
automata.

A 5 – cell totalistic cellular automaton
In our project we decided to explore the case of an automaton with five cell neighbourhoods. A five cell
neighbourhood can have 25 = 32 possible colourings if each cell is assigned values 0 or 1. Some examples
are shown in Figure 8. Further, all these 32 neighbourhoods can lead to a cell with state 0 or 1. Hence
there will be 232 = 4294967296 cellular automata with five cell neighbourhoods. We realised that it
would be too difficult to explore such a large number of cases.

A 5 – cell totalistic cellular automaton

In our project we decided to explore the case of an automaton with five cell neighbourhoods.
A five cell neighbourhood can have 25 = 32 possible colourings if each cell is assigned values
0 or 1. Some examples are shown in Figure 8. Further, all these 32 neighbourhoods can lead
to a cell with state 0 or 1. Hence there will be 232 = 4294967296 cellular automata with five
cell neighbourhoods. We realised that it would be too difficult to explore such a large number
of cases.

Figure 8 Five - cell neighbourhoods for a totalistic cellular automaton.

However if we go by the totalistic approach, the sum of the values of a 5 – cell
neighbourhood can be 0, 1, 2, 3, 4 or 5, thus reducing the neighbourhood possibilities to 6
only! Each of these neighbourhoods can be assigned to 0 or 1 in the next generation of cells
thus leading to 26 = 64 possible automata rules. We have chosen to number the rules from 0
to 63. Thus rule 0 will represent the case when all total neighbourhood values (from 0 to 5)
are assigned to 0. Similarly, rule 63 will represent the case when all total neighbourhood
values (from 0 to 5) are assigned to 1. Since these two rules lead to all white cells or all black
cells in subsequent generations, they may be referred to as trivial cases.

As a non-trivial case, let us consider rule 53 which has a binary representation 110101 (as it
can be expressed in powers of 2 as 1 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20).

In order to define rule 53, we shall place the binary digits of 53 in correspondence with the
sum values starting with 5 till 0. This leads us to the following rule

Sum 5 4 3 2 1 0
Assignment

of 0 or 1
1 1 0 1 0 1

Table 1. Rule 53 totalistic cellular automata rule

When applied on a grid of square cells with a single live cell in the centre of row 1, this rule
leads to the following intricate and symmetric triangular pattern.

 0

0

1

0

1

 1

0

1

0

0

 0

0

1

1

0

 1

0

0

0

1

Figure 8. Five - cell neighbourhoods for a Totalistic Cellular Automaton.

However if we go by the totalistic approach, the sum of the values of a 5 – cell neighbourhood can be 0,
1, 2, 3, 4 or 5, thus reducing the neighbourhood possibilities to 6 only! Each of these neighbourhoods
can be assigned to 0 or 1 in the next generation of cells thus leading to 26 = 64 possible automata rules.
We have chosen to number the rules from 0 to 63. Thus Rule 0 will represent the case when all total
neighbourhood values (from 0 to 5) are assigned to 0. Similarly, Rule 63 will represent the case when all

110 Azim Premji University At Right Angles, July 2018

total neighbourhood values (from 0 to 5) are assigned to 1. Since these two rules lead to all white cells or
all black cells in subsequent generations, they may be referred to as trivial cases.

As a non-trivial case, let us consider rule 53 which has a binary representation 110101 (as it can be
expressed in powers of 2 as 1 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20).

In order to define rule 53, we shall place the binary digits of 53 in correspondence with the sum values
starting with 5 till 0. This leads us to the following rule

Sum 5 4 3 2 1 0
Assignment of 0 or 1 1 1 0 1 0 1

Table 1. Rule 53 totalistic cellular automata rule

When applied on a grid of square cells with a single live cell in the centre of row 1, this rule leads to the
following intricate and symmetric triangular pattern.

Figure 9: Rule 53

Table 2 lists out the defining rules of all 64 totalistic automata. Note that in any row of the
table we will find the binary digits of the corresponding rule number in the columns
numbered 5,4,3,2,1 and 0.

Sum 5 4 3 2 1 0
Rule 0 0 0 0 0 0 0
Rule 1 0 0 0 0 0 1
Rule 2 0 0 0 0 1 0
Rule 3 0 0 0 0 1 1
Rule 4 0 0 0 1 0 0
Rule 5 0 0 0 1 0 1
Rule 6 0 0 0 1 1 0
Rule 7 0 0 0 1 1 1
Rule 8 0 0 1 0 0 0
Rule 9 0 0 1 0 0 1

Rule 10 0 0 1 0 1 0
Rule 11 0 0 1 0 1 1
Rule 12 0 0 1 1 0 0
Rule 13 0 0 1 1 0 1
Rule 14 0 0 1 1 1 0
Rule 15 0 0 1 1 1 1
Rule 16 0 1 0 0 0 0
Rule 17 0 1 0 0 0 1
Rule 18 0 1 0 0 1 0
Rule 19 0 1 0 0 1 1
Rule 20 0 1 0 1 0 0
Rule 21 0 1 0 1 0 1
Rule 22 0 1 0 1 1 0
Rule 23 0 1 0 1 1 1
Rule 24 0 1 1 0 0 0
Rule 25 0 1 1 0 0 1
Rule 26 0 1 1 0 1 0
Rule 27 0 1 1 0 1 1
Rule 28 0 1 1 1 0 0
Rule 29 0 1 1 1 0 1
Rule 30 0 1 1 1 1 0

Figure 9: Rule 53

Table 2 lists out the defining rules of all 64 totalistic automata. Note that in any row of the table we will
find the binary digits of the corresponding rule number in the columns numbered 5,4,3,2,1 and 0.

Sum 5 4 3 2 1 0

Rule 0 0 0 0 0 0 0

Rule 1 0 0 0 0 0 1

Rule 2 0 0 0 0 1 0

Rule 3 0 0 0 0 1 1

Rule 4 0 0 0 1 0 0

Rule 5 0 0 0 1 0 1

Rule 6 0 0 0 1 1 0

Rule 7 0 0 0 1 1 1

Rule 8 0 0 1 0 0 0

Rule 9 0 0 1 0 0 1

Rule 10 0 0 1 0 1 0

Rule 11 0 0 1 0 1 1

Rule 12 0 0 1 1 0 0

Rule 13 0 0 1 1 0 1

Rule 14 0 0 1 1 1 0

Rule 15 0 0 1 1 1 1

Rule 16 0 1 0 0 0 0

Rule 17 0 1 0 0 0 1

Table 2 Defining rules for a 5 - cell totalistic cellular automaton

111Azim Premji University At Right Angles, July 2018

Sum 5 4 3 2 1 0

Rule 18 0 1 0 0 1 0

Rule 19 0 1 0 0 1 1

Rule 20 0 1 0 1 0 0

Rule 21 0 1 0 1 0 1

Rule 22 0 1 0 1 1 0

Rule 23 0 1 0 1 1 1

Rule 24 0 1 1 0 0 0

Rule 25 0 1 1 0 0 1

Rule 26 0 1 1 0 1 0

Rule 27 0 1 1 0 1 1

Rule 28 0 1 1 1 0 0

Rule 29 0 1 1 1 0 1

Rule 30 0 1 1 1 1 0

Rule 31 0 1 1 1 1 1

Rule 32 1 0 0 0 0 0

Rule 33 1 0 0 0 0 1

Rule 34 1 0 0 0 1 0

Rule 35 1 0 0 0 1 1

Rule 36 1 0 0 1 0 0

Rule 37 1 0 0 1 0 1

Rule 38 1 0 0 1 1 0

Rule 39 1 0 0 1 1 1

Rule 40 1 0 1 0 0 0

Rule 41 1 0 1 0 0 1

Rule 42 1 0 1 0 1 0

Rule 43 1 0 1 0 1 1

Rule 44 1 0 1 1 0 0

Rule 45 1 0 1 1 0 1

Rule 46 1 0 1 1 1 0

Rule 47 1 0 1 1 1 1

Rule 48 1 1 0 0 0 0

Rule 49 1 1 0 0 0 1

Rule 50 1 1 0 0 1 0

Rule 51 1 1 0 0 1 1

Rule 52 1 1 0 1 0 0

Rule 53 1 1 0 1 0 1

Rule 54 1 1 0 1 1 0

Rule 55 1 1 0 1 1 1

Rule 56 1 1 1 0 0 0

Rule 57 1 1 1 0 0 1

Rule 58 1 1 1 0 1 0

Rule 59 1 1 1 0 1 1

Rule 60 1 1 1 1 0 0

Rule 61 1 1 1 1 0 1

Rule 62 1 1 1 1 1 0

Rule 63 1 1 1 1 1 1

Table 2

112 Azim Premji University At Right Angles, July 2018

Classification of the 5 – cell totalistic cellular automata (TCA)
We decided to explore all 64 TCAs by writing a program in Java (see Appendix I). The program
produces the graphic image of the first 100 iterations of a specified rule number. After observing all 64
TCAs we tried to classify them based on their evolutionary behaviour. Interestingly, we found that the
TCAs may be classified into four major categories which are very similar to the case of the ECAs. These
categories are also mentioned in the research literature associated with cellular automata.

1. Uniform: All cells in the grid are either black or white.

2. Repetitive: These automata reveal regular alternating pattern or a block of cells which repeat
themselves throughout the grid.

3. Nested or Fractal-like: These automata lead to Sierpinski triangle like fractal patterns exhibiting
clear self- similarity or other nested patterns.

4. Random or chaotic: These are patterns which cannot be placed in any of the above three categories.
There is no fixed pattern in these automata and their evolution is highly unpredictable.

The rule numbers which fit into the above categories are listed in the following table.

Category TCA rule number Characteristics

Uniform 0,4,8,12,16 (multiples of 4) All cells are white (trivial case)

 63 All cells are black (trivial case)

54, 57, 58, 59, 61, 62 Black cells with a border of black and white
cells

Repetitive 1,3,5,7,11,13,15,31 Repetitive pattern of rows of black and white
cells. 7,11,13,15 and 31 have a different
configuration at the border.

19, 23 Alternating rows of black and white with a
central band pattern.

Nested 2, 6, 14, 30, 33, 34 Sierpinski triangle like structure

21, 25, 38, 42, 49 Nested but not Sierpinski like

Random 17, 29, 35, 47 A generally random pattern with a border
which gets wider as the iterations increase.

9, 27, 41, 45, 50, 51 A generally random pattern with a uniform
border which remains the same as the
iterations increase.

Chaotic 10, 18, 22, 26, 33, 43, 46 A seemingly chaotic behaviour (although
symmetrical)

All black with a fern-like
repetitive pattern in the border

53, 54 It is difficult to place this in any of the above
categories.

Table 3. Classification of the 64 Totalistic Cellular Automata.

113Azim Premji University At Right Angles, July 2018

Here are some examples of TCAs which evolve from one live cell in the centre of the top row of the grid.
One may note that all TCAs are symmetrical about the height of the triangular pattern. While describing
them we will focus on the evolution of the cells in one half of the triangular pattern.

3. Nested or Fractal –like: These automata lead to Sierpinski triangle like fractal
patterns exhibiting clear self- similarity or other nested patterns.

4. Random or chaotic: These are patterns which cannot be placed in any of the above
three categories. There is no fixed pattern in these automata and their evolution is
highly unpredictable.

The rule numbers which fit into the above categories are listed in the following table.

Category TCA rule number Characteristics
Uniform

0,4,8,12,16 (multiples of 4) All cells are white (trivial case)
63 All cells are black (trivial case)
54, 57, 58, 59, 61, 62 Black cells with a border of black

and white cells
Repetitive

1,3,5,7,11,13,15,31 Repetitive pattern of rows of black
and white cells. 7,11,13,15 and 31
have a different configuration at the
border.

19, 23 Alternating rows of black and white
with a central band pattern.

Nested 2, 6, 14, 30, 33, 34 Sierspinski triangle like structure
21, 25, 38, 42, 49 Nested but not Sierspinski like

Random 17, 29, 35, 47 A generally random pattern with a
border which gets wider as the
iterations increase.

9, 27, 41, 45, 50, 51 A generally random pattern with a
uniform border which remains the
same as the iterations increase.

Chaotic 10, 18, 22, 26, 33, 43, 46 A seemingly chaotic behaviour
(although symmetrical)

All black with a
fern-like repetitive
pattern in the border

53, 54 It is difficult to place this in any of
the above categories.

Table 3. Classification of the 64 Totalistic Cellular Automata.

Here are some examples of TCAs which evolve from one live cell in the centre of the top row
of the grid. One may note that all TCAs are symmetrical about the height of the triangular
pattern. While describing them we will focus on the evolution of the cells in one half of the
triangular pattern.

Figure 10. Rule 57: Uniform - a black triangle is formed with a border of white cells. Figure 10. Rule 57: Uniform - a black triangle is formed with a border of white cells.

Figure 11. Rule 3: Repetitive pattern comprising rows of black and white cells

Figure 12. Rule 23: Alternating rows of black and white with a central band pattern.

Figure 13. Rule 6: Sierpinski triangle like structure

Figure 14. Rule 25: Nested Structure

Figure 11. Rule 3: Repetitive pattern comprising rows of black and white cells

Figure 11. Rule 3: Repetitive pattern comprising rows of black and white cells

Figure 12. Rule 23: Alternating rows of black and white with a central band pattern.

Figure 13. Rule 6: Sierpinski triangle like structure

Figure 14. Rule 25: Nested Structure

Figure 12. Rule 23: Alternating rows of black and white with a central band pattern.

Figure 11. Rule 3: Repetitive pattern comprising rows of black and white cells

Figure 12. Rule 23: Alternating rows of black and white with a central band pattern.

Figure 13. Rule 6: Sierpinski triangle like structure

Figure 14. Rule 25: Nested Structure

Figure 13. Rule 6: Sierpinski triangle like structure

Figure 11. Rule 3: Repetitive pattern comprising rows of black and white cells

Figure 12. Rule 23: Alternating rows of black and white with a central band pattern.

Figure 13. Rule 6: Sierpinski triangle like structure

Figure 14. Rule 25: Nested Structure Figure 14. Rule 25: Nested Structure

114 Azim Premji University At Right Angles, July 2018

Figure 15. Rule 35: A generally random pattern with a border which gets wider as the
iterations increase.

Figure 15. Rule 27: A generally random pattern with a uniform repetitive border.

Figure 15. Rule 46: A seemingly chaotic pattern

Concluding discussion

In this article we have described the second phase of our exploratory study on one -
dimensional Cellular Automata. In order to define our own cellular automata we adopted the
totalistic approach where the state of a given cell is dependent on the sum of values of its five
neighbouring cells (the cell just above it, two to the left and two to the right) in the previous
iteration. These led to neighbourhood values ranging from 0 to 5 each of which can give rise

Figure 15. Rule 35: A generally random pattern with a border which gets wider as the iterations increase.

Figure 15. Rule 35: A generally random pattern with a border which gets wider as the
iterations increase.

Figure 15. Rule 27: A generally random pattern with a uniform repetitive border.

Figure 15. Rule 46: A seemingly chaotic pattern

Concluding discussion

In this article we have described the second phase of our exploratory study on one -
dimensional Cellular Automata. In order to define our own cellular automata we adopted the
totalistic approach where the state of a given cell is dependent on the sum of values of its five
neighbouring cells (the cell just above it, two to the left and two to the right) in the previous
iteration. These led to neighbourhood values ranging from 0 to 5 each of which can give rise

Figure 16. Rule 27: A generally random pattern with a uniform repetitive border.

Figure 15. Rule 35: A generally random pattern with a border which gets wider as the
iterations increase.

Figure 15. Rule 27: A generally random pattern with a uniform repetitive border.

Figure 15. Rule 46: A seemingly chaotic pattern

Concluding discussion

In this article we have described the second phase of our exploratory study on one -
dimensional Cellular Automata. In order to define our own cellular automata we adopted the
totalistic approach where the state of a given cell is dependent on the sum of values of its five
neighbouring cells (the cell just above it, two to the left and two to the right) in the previous
iteration. These led to neighbourhood values ranging from 0 to 5 each of which can give rise

Figure 17. Rule 46: A seemingly chaotic pattern

Concluding discussion
In this article we have described the second phase of our exploratory study on one - dimensional Cellular
Automata. In order to define our own cellular automata we adopted the totalistic approach where the
state of a given cell is dependent on the sum of values of its five neighbouring cells (the cell just above
it, two to the left and two to the right) in the previous iteration. These led to neighbourhood values
ranging from 0 to 5, each of which can give rise to a cell with value 0 or 1. This defining rule led to 64
cellular automata with some interesting patterns. We developed a code in Java to study their evolutionary
patterns. The results were interesting as we were able to classify the 64 automata into four major
categories – Uniform, Repetitive, Nested and Random. However an additional category with a repetitive
fern-like pattern in the border was also identified which did not fit into the other four categories. The
results of our investigations have been compiled in Table 3.

In this project we have explored two colour (two – state) ECAs and TCAs. It would be interesting to
explore other kinds of automata which emerge when there are more than two states. A treatment may be
found in http://mathworld.wolfram.com/TotalisticCellularAutomaton.html.

We hope we have succeeded in taking the reader on an exciting journey into the computational world of
the one - dimensional cellular automata!

115Azim Premji University At Right Angles, July 2018

APPENDIX I

JAVA Code for the Totalistic Cellular Automaton

import java.awt.*;
import java.awt.Color;
import java.awt.Graphics;
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.imageio.ImageIO;
import java.awt.image.BufferedImage;
import java.io.*;
public class Processor extends JPanel
{
 static int line=0;
 static int max_lines=120;
 static BufferedImage[]images=new BufferedImage[max_lines];
 public Processor()
 {
 setSize(1000,1000);
 }

 @Override
 public void paintComponent(Graphics g)
 {
 System.out.println("paintComponent called from "
+ Thread.currentThread().getName());
 //new Exception().printStackTrace(System.out);
 super.paintComponent(g);
 if(line==0)
 {
 g.setColor(Color.WHITE);
 g.fillRect(0,0,1000,1000);
 g.setColor(Color.BLACK);
 g.fillRect(500,0,2,2);
 }
 else if(line!=0)
 {
 System.out.println("Line-1="+(line-1));
 g.drawImage(images[line-1],0,0,null);
 int x_cor=500-line*4;
 int y_cor=0+line*2;//The x and y coordinates of the points where the new squares are to be added from
 for(int lv=1;lv<=4*(line+1)-3;lv++)
 {
 BufferedImage img=images[line-1];
 if(lv>1)
 x_cor=x_cor+2;//Value adjusted for each square to be drawn in the same line
 int test_x=x_cor-3;
 int test_y=y_cor-1;
 int sum=0;
 for(int lv2=1;lv2<=5;lv2++)
 {
 System.out.println("(x,y):"+test_x+","+test_y);
 Color c=new Color(img.getRGB(test_x,test_y));
 if(c.getRed()==0&&c.getGreen()==0&&c.getBlue()==0)
 {
 sum+=1;
 }
 test_x=test_x+2;
 }

116 Azim Premji University At Right Angles, July 2018

JONAKI GHOSH is an Assistant Professor in the Dept. of Elementary Education, Lady Sri Ram College, University
of Delhi where she teaches courses related to math education. She obtained her Ph.D. in Applied Mathematics from
Jamia Milia Islamia University, New Delhi, and her M.Sc. from IIT Kanpur. She has taught mathematics at the Delhi
Public School, R K Puram, where she set up the Math Laboratory & Technology Centre. She has started a Foundation
through which she conducts professional development programmes for math teachers. Her primary area of research
interest is in the use of technology in mathematics instruction. She is a member of the Indo Swedish Working Group
on Mathematics Education. She regularly participates in national and international conferences. She has published
articles in journals and authored books for school students. She may be contacted at jonakibghosh@gmail.com.

ROHIT ADSULE is a 12th grade student from The Shri Ram School Aravali, Gurugram, Haryana. His hobbies
include chess, piano and football. He loves integrating his skills in mathematics with concepts related to computer
science, and it was thus he came across the topic of cellular automata. He wishes to explore and understand the
connection of mathematics to seemingly unrelated fields such as music theory and behavioural mechanics.

CLOSING REMARKS
In this article we have discussed the basics of the one-dimensional Elementary Cellular
Automata as described by Stephan Wolfram. Our explorations have convinced us that simple
rules can lead to interesting and complicated evolution patterns. These can be classified into
the four categories: Uniform, Repetitive, Nested and Random, as described in the earlier
section. However some of these ECAs are quite sensitive to initial conditions. Changing the
state of one single cell in the initial row of the automata may lead to completely different
pattern. Thus the ECA may transition from one category to another.

The topic of cellular automata offers tremendous scope for investigations. In the subsequent
article, we shall detail elementary cellular automata which we have created by defining our
own CA rules and we hope to highlight some of its interesting properties.

REFERENCES
1. Gage, D., Laub, E., McGarry, B. Cellular Automata: Is rule 30 random? extracted

from https://www. cs. indiana. edu/~dgerman/2005midwestNKSconference/dgelbm.
pdf

2. Conway’s Game of Life extracted from https://en. wikipedia.
org/wiki/Conway%27s_Game_of_Life

3. Georgiadis, E., (2007). A Note on Minimal Boolean Formula Size of One-
Dimensional Cellular Automata, Massachusetts Institute of Technology, Cambridge,
MA 02139, U. S. A

4. Karnaugh maps retrieved from https://en. wikipedia. org/wiki/Karnaugh_map
5. House, A. (2003). Introduction to Karnaugh Maps extracted from http://www. eecg.

toronto. edu/~ahouse/mirror/engi3861/kmaps. pdf
6. Nico’s Elementary Cellular Automata retrieved from https://sciencevsmagic.

net/eca/#176
7. Wolfram, S., (1985). Two-Dimensional Cellular Automata In Journal of Statistical

Physics, 38, 901- 946.
8. Wolfram, S., (1986). Cellular Automata and Cryptography In Crypto '85 Proceedings,

Lecture Notes in ComputerScience, 218, 429-432 (Springer-Verlag, 1986).
9. Yang, Y., Billings, S. A. (2000). Extracting Boolean Rules from CA Patterns In IEEE

Transactions on Systems, Man and Cybernetics - Part B: Cybernetics, 30 (4), 575 -
581.

JONAKI GHOSH is an Assistant Professor in the Dept. of Elementary Education, Lady Sri Ram College,
University of Delhi where she teaches courses related to math education. She obtained her Ph.D. in Applied
Mathematics from Jamia Milia Islamia University, New Delhi, and her M.Sc. from IIT Kanpur. She has taught
mathematics at the Delhi Public School, R K Puram, where she set up the Math Laboratory & Technology
Centre. She has started a Foundation through which she conducts professional development programmes for
math teachers. Her primary area of research interest is in the use of technology in mathematics instruction. She

is a member of the Indo Swedish Working Group on Mathematics Education. She regularly participates in
national and international conferences. She has published articles in journals and authored books for school
students. She may be contacted at jonakibghosh@gmail.com.

ROHIT ADSULE is a 12th grade student from The Shri Ram School Aravali, Gurugram, Haryana. His hobbies
include chess, piano and football. He loves integrating his skills in mathematics with concepts related to
computer science, and it was thus he came across the topic of cellular automata. He wishes to explore and
understand the connection of mathematics to seemingly unrelated fields such as music theory and behavioural
mechanics.

 if(sum==5||sum==4||sum==2||sum==0)//Set rule number here
 {
 g.fillRect(x_cor,y_cor,2,2);
 }
 }
 }
 }

 public static BufferedImage toBufferedImage(Component component)
 {
 BufferedImage image = new BufferedImage(component.getWidth(), component.getHeight(), BufferedImage.
TYPE_INT_RGB);
 Graphics g = image.getGraphics();
 component.paint(g);
 return image;
 }

 public static void main(String[]args)throws IOException
 {
 JFrame frame=new JFrame("Automaton");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(1000,1000);
 BufferedImage image;
 Processor t=new Processor();
 frame.add(t);
 image=new BufferedImage(1,1,BufferedImage.TYPE_INT_RGB);
 image=toBufferedImage(t);
 images[0]=image;
 line++;
 while(line<max_lines)
 {
 image=toBufferedImage(t);
 images[line]=image;

 line++;
 }
 //Fie I/O operation
 File f=new File("Rule 100.png");
 ImageIO.write(images[line-1],"PNG",f);
 frame.setVisible(true);
 }

}

