Problems for the Senior School

Problem Editors: PRITHWIJIT DE & SHAILESH SHIRALI

Problems for Solution

The problems in this set are adapted from the Romanian Mathematical Competitions, 2014.

Problem IV-1-S.1

Let $A = \{1, 3, 3^2, 3^3, ..., 3^{2014}\}$. A *partition* of A is a union of non-empty disjoint subsets of A.

- (a) Prove that there is no partition of *A* such that the product of all the elements in each subset is a square.
- (b) Does there exist a partition of *A* such that the sum of elements in each subset is a square?

Problem IV-1-S.2

Let ABC be a triangle in which $\angle A = 135^\circ$. The perpendicular to line AB at A intersects side BC at D, and the bisector of $\angle B$ intersects side AC at E. Find the measure of $\angle BED$ (see Figure 1).

Problem IV-1-S.3

Determine all pairs (n, p) of positive integers such that

$$(n^2 + 1)(p^2 + 1) + 45 = 2(2n + 1)(3p + 1).$$

Problem IV-1-S.4

Determine all irrational numbers x such that both $x^2 + x$ and $x^3 + 2x^2$ are integers.

Problem IV-1-S.5

Find all pairs (p, q) of prime numbers, with $p \le q$, such that

$$p(2q + 1) + q(2p + 1) = 2(p^2 + q^2).$$

Solutions of Problems in Issue-III-3 (November 2014)

Solution to problem III-3-S.1 *If*

 $(x - y + z)^2 = x^2 - y^2 + z^2$, prove: either x = y or z = y.

First observe that $x^2 - y^2 + z^2 =$ $(x+z)^2 - y^2 - 2zx = (x-y+z)(x+y+z) - 2zx$. Hence if $(x-y+z)^2 = x^2 - y^2 + z^2$, then

$$2zx = (x - y + z)(x + y + z) - (x - y + z)^{2}$$
$$= (x - y + z)(2y).$$

This yields:

$$y^{2} - (z+x)y + zx = 0, \qquad \therefore (y-x)(y-z) = 0.$$

Hence $x = y$ or $z = y$.

Solution to problem III-3-S.2 *Prove that the numbers* 10017, 100117, 1001117, ... *are all divisible by* 53.

Let a_n be the n-th number in the given sequence. Then $a_1 = 53 \times 189$. Also: $a_n = 10a_{n-1} - 53$ for each n. Hence if a_{n-1} is a multiple of 53, so is a_n . Since a_1 is a multiple of 53, it follows by the principle of induction that a_n is a multiple of 53 for every n.

Solution to problem III-3-S.3 Let ABCD be a parallelogram. Let the bisector of $\angle ABD$ meet CD produced at X and let the bisector of $\angle CBD$ meet AD produced at Y. Prove that the bisector of $\angle ABC$ is perpendicular to XY.

Let $\angle ABD = 2x$ and $\angle CBD = 2y$ (see Figure 2). Then $\angle BXD = x$ and $\angle BYD = y$. Thus in triangle BDX, BD = DX and in triangle BDY, BD = DY. Thus DX = DY; and since $\angle XDY = \angle ADC = 2(x + y)$, it follows that $\angle DXY = \angle DYX = 90^{\circ} - (x + y)$. Hence $\angle BXY = \angle BXD + \angle DXY = 90^{\circ} - y$.

If the bisector of $\angle ABC$ meets XY at Z then in triangle XBZ,

$$4XBZ + 4BXZ = (x + y - x) + 90^{\circ} - y = 90^{\circ}$$
. Hence $4BZX = 90^{\circ}$.

Solution to problem III-3-S.4 *Prove that if*

$$a_1 \leq a_2 \leq a_3 \leq ... \leq a_{10}$$
, then

$$\frac{a_1 + \dots + a_6}{6} \le \frac{a_1 + \dots + a_{10}}{10}.$$

Observe that

$$6(a_1 + \dots + a_{10}) - 10(a_1 + \dots + a_6) =$$

$$6(a_7 + \dots + a_{10}) - 4(a_1 + \dots + a_6).$$

Now
$$6(a_7 + \dots + a_{10}) \ge 24a_7$$
 and $4(a_1 + \dots + a_6) \le 24a_6$. Hence:

$$6(a_1 + \dots + a_{10}) - 10(a_1 + \dots + a_6) \ge 24(a_7 - a_6) \ge 0.$$

The result follows.

Figure 2.