Lurking within any triangle...

Morley’s
Miracle — Part |

...is an equilateral triangle

This article continues the series started in the last issue,
wherein we study one of the most celebrated and
beautiful theorems of Euclidean geometry: Morley’s
Miracle. In this segment we examine some approaches
based on trigonometry.
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Figure 1. Morley's theorem: The angle trisectors closest to each side
intersect in points which are the vertices of an equilateral triangle

n Part I of this article we had narrated the history of

this theorem and discussed a beautiful ‘pure geometry’ proof

found by M. T. Naraniengar over a century back. Readers will
recall the curious logic used: the proof starts with an equilateral
triangle and then constructs a configuration similar to the
original one, and reaches the desired conclusion this way. (We
remarked at that point that many of the pure geometry proofs
known today proceed in this way. In Part III of this article, we
will show another such proof.)
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In contrast, the trigonometric proof is
straightforward: it establishes that the triangle in
question is equilateral simply by computing the
lengths of its sides and checking that they are equal.
In that sense it is very direct, and far from subtle.
However, the algebraic steps are challenging! (Not,
you might say, for the faint of heart.)

We start by summarizing (without proof) some
facts we need from trigonometry. Proofs will be
found in the textbooks used for classes 11-12. We
use the usual notation: the sides of AABC are

a, b, c; the angles are A4, B, C (with side a opposite
2 A and so on); the radius of the circumcircle is R,
and the radius of the incircle is r.

Supplementary angles identity: For any
angle x,
sin(180° — x) = sinx. (D

Addition formula: For any two angles x and y,
sin(x +y) =sinx - cosy + cosx -siny.  (2)
Triple angle formula: For any angle x,
sin 3x = 3sinx — 4sin® x. (3)

Triple angle formula (product form): For any
angle x,

sin3x = 4sinx - sin(60° — x) - sin(60° + x). (4)
Sine rule: In AABC, the following identity holds:

a b c

= = = 2R. 5
sinA sinB sinC (%)
Cosine rule: In AABC, the following identity
holds:

a? = b% 4+ ¢ — 2bc cos A, (6)

with similar relations for sides b and c.

Of these, perhaps the only one which may look

unfamiliar is (4): the product form of the triple

angle formula. It is a nice exercise to prove it on
one’s own.

Now for the details of the trigonometric proof. Let
2A = 3x, 4B = 3y and £C = 3z. Then the three
angles created by the trisectors at vertex A are x
each, the three angles created by the trisectors at
vertex B are y each, and the three angles created by
the trisectors at vertex C are z each. (See Figure 2.)
Our strategy from this point on is straightforward:
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Figure 2.

(i) We use the sine rule in APBC and AARB to
compute the lengths of BP and BR.

(ii) We transform the two expressions so
obtained (for the lengths of BP and BR) using
the triple angle formula (quoted above).

(iii) Armed with these expressions for the lengths
of BP and BR, we use the cosine rule in ABPR
and thus find the length of PR.

Steps (i) and (ii) are easy, but (iii) involves a
substantial amount of manipulative algebra.

Now let us get started. Without any loss of
generality we take the circumcircle of AABC to
have unit radius (i.e.,, R = 1). The sine rule applied
in APBC yields:

BP _ BC _ 2R sin 3x
sinz  sinZBPC  sin(180° —y — z)
2R sin 3x 2 sin 3x

sin(y +z) _ sin(60° — x)’
sinceR = 1and x + y + z = 60°. Hence:
2sinz - sin 3x
= sin(60° —x)
In the same way we get:
2sinx -sin3z
~ sin(60° —2)
Using the triple angle formula (product form), we
transform these to the following:
_ 2sinz-4-sin(60° —x) - sinx - sin(60° + x)

Bp sin(60° — x)

= 8sinz - sinx - sin(60° + x).

Similarly, BR = 8sinx - sinz - sin(60° + z).



Now we apply the cosine rule to ABPR, using the
above expressions:

PR? = BP? + BR> — 2BP - BR - cosy

= 64 sin® z - sin® x - sin®(60° + x)
+ 64sin® x - sin® z - sin®(60° + z)
— 128sin? z - sin? x - sin(60° + x)
-sin(60° + z) - cos y

= 64sin®x - sin®z - [sin2 (60° +x)
+ sin?(60° + z) — 2 sin(60° + x)
-sin(60° + 2) - cos y].

In the last line, note the angles occurring in the

expression within square brackets: 60° +x, 60° +z

and y. Their sum is 120° + (x + y + z) = 180°.
Hence there exists a triangle with angles 60° + x,
60° + z and y. The form of the expression within
the square brackets now invites the next step.

Consider such a triangle UVW (see Figure 3) and
apply the sine rule to it. We get:

uw uv _ Vw B
siny  sin(60°+2z) sin(60° +x)

2k,

where k is the radius of the circumcircle of
AUVW. Now we apply the cosine rule to the same
triangle. We get:

UW? =UV?+VW?—-2UV -VW - cosy,
. 4k? sin® y = 4k? sin®(60° + z)

+ 4k? sin*(60° + x)

— 8k? sin(60° + z)

- sin(60° + x) cosy,

. sin®y = sin®(60° + z) + sin?(60° + x)
— 25sin(60° + z)
- sin(60° + x) cosy.
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Figure 3. Triangle UVW with
angles 60° + x, 60° + z and y

This is an identity connecting any three angles
X, ¥,z whose sum is 60°.

Going back to the expression we had found for
PR? we find an amazing simplification:

PR? = 64 sin® x - sin® y - sin® z,
and therefore:
PR =8 sinx-siny -sinz.

What a lovely formula!

It is immediately obvious from the form of the
above expression that we do not need to do any
further computations. For, the expression
obtained is completely symmetric in x, y, z (it
does not ‘prefer’ any of x, y, z to the other two
quantities), and this tells us that we will get
exactly the same expression for PQ as well as QR.
Hence PQ = QR = PR, and it follows that APQR
is equilateral.
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The Canadian-American number theorist Manjul Bhargava was
awarded the Fields Medal at the ICM held in July 2014, in Seoul.
Here are some quotes from an interview he gave recently to

Mr. ChidanandaRajaghatta of Times of India.

[On his being awarded the Fields Medal.]

I am honored to be a recipient of the Fields Medal; beyond that, it is a source of
encouragement and inspiration, and [ hope that it is so also for my students and
collaborators and colleagues who work with me.

[On whether math genius is a product of meticulous hard work and practice]

While a good memory and a copious supply of talent [are] very helpful, there is no substitute for hard
work. Of course, this hard work has to be done in a way where one is always making progress, and
where one is approaching this work with realistic short and long term goals with a global vision for
what on is trying to achieve.

[On whether Ramanujan’s genius was of the same kind as that of the character portrayed by
Robin Williams in the movie Good Will Hunting]

Good Will Hunting was great as a movie, but as you might imagine, in reality most mathematics is not
done the way it was portrayed in the movie. It requires years of hard work put in to get something out.
Ramanujan was a talent of a level that has never been seen, but he certainly put in the hours as well to
get the results he was interested in.
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