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Figure 1. Concurrence of the perpendicular bisectors of the sides of a triangle

certainly not parallel to each other — after all,
they meet at 𝐴𝐴𝐴𝐴!

Internal angle bisectors
Of the same nature, and proved the same way, is
this: The internal bisectors of the three angles
of a triangle concur.

To show this, we use a different locus fact which
just as basic: Given an angle 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀, the locus of
points 𝐏𝐏𝐏𝐏 equidistant from the arms 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 and 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀
is the internal bisector of ∡𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀. See Figure 2 (a).
Let the internal bisectors of∡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and∡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴meet
at 𝐼𝐼𝐼𝐼. Draw perpendiculars 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 from 𝐼𝐼𝐼𝐼 to sides
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 respectively; see Figure 2 (b). Using
the locus fact stated above, we see that 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
and 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼. Hence 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, which implies that 𝐼𝐼𝐼𝐼
lies on the internal bisector of ∡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. So the three
internal angle bisectors meet in a point.
How can we be sure that the internal bisectors
of ∡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and ∡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 do meet? The lines must

meet because they are not parallel to each other,
and we can be sure of this because
∡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 ∡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴∘, which implies that
∡𝐼𝐼𝐼𝐼𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 ∡𝐼𝐼𝐼𝐼𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐼𝐼𝐴𝐴∘.

A small tweak in this argument yields a related
but slightly less familiar result: Given any
triangle, the external bisectors of any two of its
angles and the internal bisector of the third
angle concur; see Figure 3.

A general remark. The above two proofs have a
common theme; namely, to prove that two
quantities 𝑢𝑢𝑢𝑢 and 𝑣𝑣𝑣𝑣 are equal, show that both of
them are equal to a third quantity𝑤𝑤𝑤𝑤. Viewed thus
in generality, we see a theme used frequently in
mathematics, at all levels.

Medians
The result generally encountered next is:
Theorem. The medians of a triangle concur.
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Figure 2. Concurrence of the internal bisectors of the angles of a triangle

2 At Right Angles ∣ Vol. 3, No. 3, November 2014
 Vol. 3, No. 3, November 2014 | At Right Angles 50 50 At Right Angles | Vol. 3, No. 3, November 2014

How To
Prove It
This continues the ‘Proof’ column begun earlier. In this
‘episode’ we study some results from geometry related to
the theme of concurrence.

C oncurrence of lines. An extremely common theme in
plane geometry is that of proving the concurrence of three
or more lines. (The dual problem: proving the collinearity

of three or more points.) It is of interest to study the different
strategies used. We study some well known results in this area
and contrast the approaches used to prove them.

Perpendicular bisectors
Perhaps the easiest of all results on concurrence is this: The
perpendicular bisectors of the three sides of a triangle concur.

This is best proved using the idea of a locus, namely: Given two
distinct points 𝐀𝐀𝐀𝐀 and 𝐁𝐁𝐁𝐁, the locus of points 𝐏𝐏𝐏𝐏 such that
𝐏𝐏𝐏𝐏𝐀𝐀𝐀𝐀 𝐏𝐏 𝐏𝐏𝐏𝐏𝐁𝐁𝐁𝐁 is the perpendicular bisector of segment 𝐀𝐀𝐀𝐀𝐁𝐁𝐁𝐁; see
Figure 1 (a). Here’s how the proof uses this locus idea.
Let the perpendicular bisectors of sides𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴meet at𝑂𝑂𝑂𝑂; see
Figure 1 (b). Join 𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝑂𝑂 𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝑂𝑂 𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴. Then 𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴 𝐏𝐏 𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴, and also 𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴 𝐏𝐏 𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴,
hence 𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴 𝐏𝐏 𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴. The last equality means that 𝑂𝑂𝑂𝑂 is equidistant
from 𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴 and hence lies on the perpendicular bisector of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴.
Therefore the three perpendicular bisectors meet in a point.
How can we be sure that the perpendicular bisectors of sides 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 do meet? That’s easy: they meet because they are not
parallel to each other, and this is ensured by the fact that they are
respectively perpendicular to 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴; and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 are
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Figure 1. Concurrence of the perpendicular bisectors of the sides of a triangle

certainly not parallel to each other — after all,
they meet at 𝐴𝐴𝐴𝐴!

Internal angle bisectors
Of the same nature, and proved the same way, is
this: The internal bisectors of the three angles
of a triangle concur.

To show this, we use a different locus fact which
just as basic: Given an angle 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀, the locus of
points 𝐏𝐏𝐏𝐏 equidistant from the arms 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 and 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀
is the internal bisector of ∡𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀. See Figure 2 (a).
Let the internal bisectors of∡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and∡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴meet
at 𝐼𝐼𝐼𝐼. Draw perpendiculars 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 from 𝐼𝐼𝐼𝐼 to sides
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 respectively; see Figure 2 (b). Using
the locus fact stated above, we see that 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
and 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼. Hence 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, which implies that 𝐼𝐼𝐼𝐼
lies on the internal bisector of ∡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. So the three
internal angle bisectors meet in a point.
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A small tweak in this argument yields a related
but slightly less familiar result: Given any
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Figure 5. Variation of the ratio 𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 as 𝑡𝑡𝑡𝑡 moves along 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

ratio is repeated. If 𝑡𝑡𝑡𝑡 is very close to 𝑡𝑡𝑡𝑡, the ratio
is close to 0, and it can get as close to 0 as we
may want. Similarly, if 𝑡𝑡𝑡𝑡 is very close to 𝑡𝑡𝑡𝑡, the
ratio becomes very large, and it can get as large
as we may want (there is no upper bound).

Or, to use terminology generally heard in a
calculus class rather than a geometry class, we
may say that the ratio 𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is a strictly
monotonic function of the position of 𝑡𝑡𝑡𝑡.

Proof based on area considerations. We offer a
second proof which is of a very different nature. It
uses one basic idea over and over again: A median
of a triangle divides it into two triangles with equal
area. (See Figure 6. Observe the notation used
carefully: if 𝑋𝑋𝑋𝑋 is any geometric �igure, then [𝑋𝑋𝑋𝑋𝑋𝑋
denotes the area of 𝑋𝑋𝑋𝑋.)

Here’s how we invoke this idea. In Figure 7 we
have shown △𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴 with two medians 𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵 and 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶
which intersect at 𝐺𝐺𝐺𝐺. The line through 𝑡𝑡𝑡𝑡 and 𝐺𝐺𝐺𝐺 is
then drawn; it intersects 𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴 at 𝐷𝐷𝐷𝐷. Note that there
is nothing being said about 𝑡𝑡𝑡𝑡𝐷𝐷𝐷𝐷 being a median
and (therefore) 𝐷𝐷𝐷𝐷 being the midpoint of 𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴.
Rather, we have to prove that 𝑡𝑡𝑡𝑡𝐷𝐷𝐷𝐷 is a median. To
make sure we do not fall into the trap of assuming
implicitly that it is a median (and thus assuming
the very thing we wish to prove), we have drawn
it using a dashed line.

The various lines drawn within △𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴 create six
smaller triangles. Certain pairs of these are

immediately seen to have equal area, by making
use of the property mentioned above. (i) Since 𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵
is a median, and 𝐺𝐺𝐺𝐺 is a point on 𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵,
[𝐺𝐺𝐺𝐺𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝑋𝑋 𝑡𝑡 [𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝑋𝑋 𝑡𝑡 𝐺𝐺𝐺𝐺, say. (ii) Since 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 is a median,
and 𝐺𝐺𝐺𝐺 is a point on 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶, [𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶𝑋𝑋 𝑡𝑡 [𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶𝑋𝑋 𝑡𝑡 𝐺𝐺𝐺𝐺, say.
In Figure 7 we have written these symbols within
the respective regions. Let 𝑢𝑢𝑢𝑢 𝑡𝑡 [𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡𝐷𝐷𝐷𝐷𝑋𝑋 and
𝑣𝑣𝑣𝑣 𝑡𝑡 [𝐺𝐺𝐺𝐺𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝑋𝑋, respectively. Since [𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝑋𝑋 𝑡𝑡 [𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝑋𝑋,
we have 𝑢𝑢𝑢𝑢 𝑢𝑢 𝑣𝑣𝑣𝑣 𝑢𝑢 𝐺𝐺𝐺𝐺 𝑡𝑡 𝐺𝐺𝐺𝐺 𝑢𝑢 𝐺𝐺𝐺𝐺 𝑢𝑢 𝐺𝐺𝐺𝐺; hence:

𝑢𝑢𝑢𝑢 𝑢𝑢 𝑣𝑣𝑣𝑣 𝑡𝑡 𝑢𝑢𝐺𝐺𝐺𝐺𝑢𝑢

Again, since [𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶𝑋𝑋 𝑡𝑡 [𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶𝑋𝑋, we have
𝑢𝑢𝑢𝑢 𝑢𝑢 𝑣𝑣𝑣𝑣 𝑢𝑢 𝐺𝐺𝐺𝐺 𝑡𝑡 𝐺𝐺𝐺𝐺 𝑢𝑢 𝐺𝐺𝐺𝐺 𝑢𝑢 𝐺𝐺𝐺𝐺; hence:

𝑢𝑢𝑢𝑢 𝑢𝑢 𝑣𝑣𝑣𝑣 𝑡𝑡 𝑢𝑢𝐺𝐺𝐺𝐺𝑢𝑢

From the above equalities we deduce that

𝐺𝐺𝐺𝐺 𝑡𝑡 𝐺𝐺𝐺𝐺𝑢𝑢

Nowwe argue algebraically. Let 𝑡𝑡𝑡𝑡𝐷𝐷𝐷𝐷 𝐵𝐵 𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴 𝑡𝑡 𝑡𝑡𝑡𝑡.
Since △𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡𝐷𝐷𝐷𝐷 and △𝐺𝐺𝐺𝐺𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 have equal altitude, and
their bases are in the ratio 𝑡𝑡𝑡𝑡 𝐵𝐵 𝑡𝑡, their areas bear
this same ratio to one another. Hence:

𝑢𝑢𝑢𝑢 𝑡𝑡 𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣𝑢𝑢

Similarly, the areas of △𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐷𝐷𝐷𝐷 and △𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 bear this
same ratio to one another. Hence:

𝑢𝑢𝐺𝐺𝐺𝐺 𝑢𝑢 𝑢𝑢𝑢𝑢 𝑡𝑡 𝑡𝑡𝑡𝑡𝑦𝑦𝑢𝑢𝐺𝐺𝐺𝐺 𝑢𝑢 𝑣𝑣𝑣𝑣𝑦𝑦𝑢𝑢

By subtraction the above two equalities yield:

𝑢𝑢𝐺𝐺𝐺𝐺 𝑡𝑡 𝑢𝑢𝑡𝑡𝑡𝑡𝐺𝐺𝐺𝐺𝑦𝑦 𝑦𝑦 𝐺𝐺𝐺𝐺 𝑡𝑡 𝑡𝑡𝑡𝑡𝐺𝐺𝐺𝐺𝑢𝑢
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B CD

K

If AD is a median, then

[ABD] = [ACD] . If K is

any point on AD, then

[KBD] = [KCD] (since

KD is a median of

△KBC). Hence by

subtraction,

[ABK] = [ACK] .

= =

Figure 6. Property of a median of a triangle
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Figure 3. Concurrence of two external angle bisectors and one internal bisector

This turns out to be more challenging to prove,
because the median is not so obviously a locus,
unlike the perpendicular bisector of a line
segment or the bisector of an angle. We offer three
proofs of concurrence. The �irst is based on a well
known theorem of elementary geometry: The
segment joining the midpoints of two sides of a
triangle is parallel to and half the third side.
This is, of course, themidpoint theorem.
Proof based on the midpoint theorem. In
Figure 4 (a) we have drawn two medians, 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶; they intersect at 𝐺𝐺𝐺𝐺�. Consider △𝐺𝐺𝐺𝐺�𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶
and △𝐺𝐺𝐺𝐺�𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶. Since 𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 𝐸𝐸 𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 (midpoint theorem),
the two triangles are similar to each other,
hence their sides are in proportion. Since
𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 𝐸𝐸 �

�𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 (midpoint theorem, again), it follows
that 𝐺𝐺𝐺𝐺�𝐵𝐵𝐵𝐵 𝐸𝐸 �

�𝐺𝐺𝐺𝐺�𝐵𝐵𝐵𝐵. Hence 𝐺𝐺𝐺𝐺� divides segment 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
in the ratio 2 ∶ 1.
In Figure 4 (b) we have drawn 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 and the
remaining median 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴; they intersect at 𝐺𝐺𝐺𝐺�.

Considering△𝐺𝐺𝐺𝐺�𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 and△𝐺𝐺𝐺𝐺�𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 and invoking the
midpoint theorem twice, like earlier, we deduce
that 𝐺𝐺𝐺𝐺� divides segment 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 in the ratio 2 ∶ 1.
So 𝐺𝐺𝐺𝐺� and 𝐺𝐺𝐺𝐺� divide 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 in the identical ratio
(2 ∶ 1). This means that they are the same point!
In other words, the point where 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 meet
is identical to the point where 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 meet.
This obviously means that 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 concur.
Remark. Note the reasoning involved. It is
rather more subtle than the reasoning used in
the proofs for concurrence of the perpendicular
bisectors and the angle bisectors. The
underlying principle by which we concluded
that points 𝐺𝐺𝐺𝐺�𝐴𝐴 𝐺𝐺𝐺𝐺� are the same is illustrated in
Figure 5. Let 𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 be a given segment, and let 𝑃𝑃𝑃𝑃 be
a variable point located strictly in its interior.
(This means that 𝑃𝑃𝑃𝑃 cannot coincide with either
𝐴𝐴𝐴𝐴 or 𝐵𝐵𝐵𝐵.) Consider the ratio 𝑡𝑡𝑡𝑡 𝐸𝐸 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵. Then, as
𝑃𝑃𝑃𝑃 moves from 𝐴𝐴𝐴𝐴 towards 𝐵𝐵𝐵𝐵, this ratio assumes
every possible positive value exactly once. No
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Figure 4. Concurrence of the medians of a triangle: proof using similar triangles
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A BP

Figure 5. Variation of the ratio 𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 as 𝑡𝑡𝑡𝑡 moves along 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

ratio is repeated. If 𝑡𝑡𝑡𝑡 is very close to 𝑡𝑡𝑡𝑡, the ratio
is close to 0, and it can get as close to 0 as we
may want. Similarly, if 𝑡𝑡𝑡𝑡 is very close to 𝑡𝑡𝑡𝑡, the
ratio becomes very large, and it can get as large
as we may want (there is no upper bound).

Or, to use terminology generally heard in a
calculus class rather than a geometry class, we
may say that the ratio 𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is a strictly
monotonic function of the position of 𝑡𝑡𝑡𝑡.

Proof based on area considerations. We offer a
second proof which is of a very different nature. It
uses one basic idea over and over again: A median
of a triangle divides it into two triangles with equal
area. (See Figure 6. Observe the notation used
carefully: if 𝑋𝑋𝑋𝑋 is any geometric �igure, then [𝑋𝑋𝑋𝑋𝑋𝑋
denotes the area of 𝑋𝑋𝑋𝑋.)

Here’s how we invoke this idea. In Figure 7 we
have shown △𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴 with two medians 𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵 and 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶
which intersect at 𝐺𝐺𝐺𝐺. The line through 𝑡𝑡𝑡𝑡 and 𝐺𝐺𝐺𝐺 is
then drawn; it intersects 𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴 at 𝐷𝐷𝐷𝐷. Note that there
is nothing being said about 𝑡𝑡𝑡𝑡𝐷𝐷𝐷𝐷 being a median
and (therefore) 𝐷𝐷𝐷𝐷 being the midpoint of 𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴.
Rather, we have to prove that 𝑡𝑡𝑡𝑡𝐷𝐷𝐷𝐷 is a median. To
make sure we do not fall into the trap of assuming
implicitly that it is a median (and thus assuming
the very thing we wish to prove), we have drawn
it using a dashed line.

The various lines drawn within △𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴 create six
smaller triangles. Certain pairs of these are

immediately seen to have equal area, by making
use of the property mentioned above. (i) Since 𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵
is a median, and 𝐺𝐺𝐺𝐺 is a point on 𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵,
[𝐺𝐺𝐺𝐺𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝑋𝑋 𝑡𝑡 [𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝑋𝑋 𝑡𝑡 𝐺𝐺𝐺𝐺, say. (ii) Since 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 is a median,
and 𝐺𝐺𝐺𝐺 is a point on 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶, [𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶𝑋𝑋 𝑡𝑡 [𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶𝑋𝑋 𝑡𝑡 𝐺𝐺𝐺𝐺, say.
In Figure 7 we have written these symbols within
the respective regions. Let 𝑢𝑢𝑢𝑢 𝑡𝑡 [𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡𝐷𝐷𝐷𝐷𝑋𝑋 and
𝑣𝑣𝑣𝑣 𝑡𝑡 [𝐺𝐺𝐺𝐺𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝑋𝑋, respectively. Since [𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝑋𝑋 𝑡𝑡 [𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝑋𝑋,
we have 𝑢𝑢𝑢𝑢 𝑢𝑢 𝑣𝑣𝑣𝑣 𝑢𝑢 𝐺𝐺𝐺𝐺 𝑡𝑡 𝐺𝐺𝐺𝐺 𝑢𝑢 𝐺𝐺𝐺𝐺 𝑢𝑢 𝐺𝐺𝐺𝐺; hence:

𝑢𝑢𝑢𝑢 𝑢𝑢 𝑣𝑣𝑣𝑣 𝑡𝑡 𝑢𝑢𝐺𝐺𝐺𝐺𝑢𝑢

Again, since [𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶𝑋𝑋 𝑡𝑡 [𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶𝑋𝑋, we have
𝑢𝑢𝑢𝑢 𝑢𝑢 𝑣𝑣𝑣𝑣 𝑢𝑢 𝐺𝐺𝐺𝐺 𝑡𝑡 𝐺𝐺𝐺𝐺 𝑢𝑢 𝐺𝐺𝐺𝐺 𝑢𝑢 𝐺𝐺𝐺𝐺; hence:

𝑢𝑢𝑢𝑢 𝑢𝑢 𝑣𝑣𝑣𝑣 𝑡𝑡 𝑢𝑢𝐺𝐺𝐺𝐺𝑢𝑢

From the above equalities we deduce that

𝐺𝐺𝐺𝐺 𝑡𝑡 𝐺𝐺𝐺𝐺𝑢𝑢

Nowwe argue algebraically. Let 𝑡𝑡𝑡𝑡𝐷𝐷𝐷𝐷 𝐵𝐵 𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴 𝑡𝑡 𝑡𝑡𝑡𝑡.
Since △𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡𝐷𝐷𝐷𝐷 and △𝐺𝐺𝐺𝐺𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 have equal altitude, and
their bases are in the ratio 𝑡𝑡𝑡𝑡 𝐵𝐵 𝑡𝑡, their areas bear
this same ratio to one another. Hence:

𝑢𝑢𝑢𝑢 𝑡𝑡 𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣𝑢𝑢

Similarly, the areas of △𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐷𝐷𝐷𝐷 and △𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 bear this
same ratio to one another. Hence:

𝑢𝑢𝐺𝐺𝐺𝐺 𝑢𝑢 𝑢𝑢𝑢𝑢 𝑡𝑡 𝑡𝑡𝑡𝑡𝑦𝑦𝑢𝑢𝐺𝐺𝐺𝐺 𝑢𝑢 𝑣𝑣𝑣𝑣𝑦𝑦𝑢𝑢

By subtraction the above two equalities yield:

𝑢𝑢𝐺𝐺𝐺𝐺 𝑡𝑡 𝑢𝑢𝑡𝑡𝑡𝑡𝐺𝐺𝐺𝐺𝑦𝑦 𝑦𝑦 𝐺𝐺𝐺𝐺 𝑡𝑡 𝑡𝑡𝑡𝑡𝐺𝐺𝐺𝐺𝑢𝑢
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If AD is a median, then

[ABD] = [ACD] . If K is

any point on AD, then

[KBD] = [KCD] (since

KD is a median of

△KBC). Hence by

subtraction,

[ABK] = [ACK] .

= =

Figure 6. Property of a median of a triangle
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⋆ It follows, by symmetry, that: the medial lines of
△𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 coincide with the medial lines of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴.
We nowmake use of this observation in a
surprising way.

⋆ Next, we note that △𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 is similar to △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴: it
is a copy of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 but with half its scale. It
stands to reason, surely, that any genuine
geometric property exhibited by △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 will
also be exhibited by△𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷. In particular we can
be sure that if the medians of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 concur,
then so do the medians of △𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷; and if the
medians of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 do not concur, then neither
do the medians of △𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷.

⋆ Let us now suppose now that the medians of
△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 do not meet in a point, and rather that
the situation is as depicted in Figure 8 (b). In
that case, it must be that the medians
𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐴𝐴 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐴𝐴 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 enclose a triangle 𝒯𝒯𝒯𝒯 (shown with a
heavy blue �illing).

⋆ Since △𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 is similar to △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, we expect
that the triangle 𝒯𝒯𝒯𝒯� created by the medial

lines of △𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 is similar to 𝒯𝒯𝒯𝒯 but has
half its dimensions. This implies that
[𝒯𝒯𝒯𝒯�] = �

� [𝒯𝒯𝒯𝒯].
⋆ On the other hand, we just noted that the

medial lines of △𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 coincide with those of
△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. This means that 𝒯𝒯𝒯𝒯� coincides with 𝒯𝒯𝒯𝒯.
Therefore we have: [𝒯𝒯𝒯𝒯�] = [𝒯𝒯𝒯𝒯].

⋆ How can we reconcile these two statements?
There is clearly just one way: it must be that
both [𝒯𝒯𝒯𝒯] = 𝒯𝒯 and [𝒯𝒯𝒯𝒯�] = 𝒯𝒯. In other words, both
𝒯𝒯𝒯𝒯 and 𝒯𝒯𝒯𝒯� have zero area.

⋆ But this is just another way of saying that the
medians 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐴𝐴 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐴𝐴 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 concur!

Closing remark. One proposition, but three
entirely different proofs …. How would you
contrast them?
In a future column, we will discuss an important
tool in the study of concurrence, which allows us
to deduce a vast number of concurrence results in
one stroke.
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Figure 7. Making use of the area bisection property to prove concurrence

But we have already shown that 𝑥𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥. Hence
𝑡𝑡𝑡𝑡 𝑥𝑥 𝑡𝑡. But this means that 𝐷𝐷𝐷𝐷 is the midpoint of 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵.
Hence 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 is a median of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵.
It follows that the third median passes through
the point of intersection of 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶. That is, the
medians of the triangle concur.
Remark. Note the use of algebraic manipulations
in this proof. As such, this is not a “pure
geometry” proof, and purists will frown at it. But
the central idea is, surely, a pleasing one. We
hope you enjoyed this neat interplay of algebra
and geometry.
Third proof. We now offer a third proof which
draws upon the midpoint theorem for its central
logic (just like the �irst proof shown above) but in
a very different way. It is taken from an article

that appeared in The Mathematical Gazette, in the
November 2001 issue, written by Mowaffaq Hajja
and Peter Walker, and titled “Why Must the
Triangle’s Medians Be Concurrent?” The central
idea is ingenious and subtle.

Figure 8(a) shows a triangle 𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 and points
𝐷𝐷𝐷𝐷𝐷𝐷 𝐵𝐵𝐵𝐵𝐷𝐷 𝐶𝐶𝐶𝐶 which are the midpoints of its sides 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,
𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵; the median 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 has been drawn, and the
medial triangle 𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 shown shaded. Here’s how
we argue.

⋆ The midpoint theorem implies that �igure
𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 is a parallelogram. Since the diagonals of
a parallelogram bisect each other, we deduce
that 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 bisects side 𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 of △𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶. So the medial
line through 𝐴𝐴𝐴𝐴 of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is the same line as the
medial line through 𝐷𝐷𝐷𝐷 of △𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶.
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Figure 8.
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⋆ It follows, by symmetry, that: the medial lines of
△𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 coincide with the medial lines of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴.
We nowmake use of this observation in a
surprising way.

⋆ Next, we note that △𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 is similar to △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴: it
is a copy of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 but with half its scale. It
stands to reason, surely, that any genuine
geometric property exhibited by △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 will
also be exhibited by△𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷. In particular we can
be sure that if the medians of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 concur,
then so do the medians of △𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷; and if the
medians of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 do not concur, then neither
do the medians of △𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷.

⋆ Let us now suppose now that the medians of
△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 do not meet in a point, and rather that
the situation is as depicted in Figure 8 (b). In
that case, it must be that the medians
𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐴𝐴 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐴𝐴 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 enclose a triangle 𝒯𝒯𝒯𝒯 (shown with a
heavy blue �illing).

⋆ Since △𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 is similar to △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, we expect
that the triangle 𝒯𝒯𝒯𝒯� created by the medial

lines of △𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 is similar to 𝒯𝒯𝒯𝒯 but has
half its dimensions. This implies that
[𝒯𝒯𝒯𝒯�] = �

� [𝒯𝒯𝒯𝒯].
⋆ On the other hand, we just noted that the

medial lines of △𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 coincide with those of
△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. This means that 𝒯𝒯𝒯𝒯� coincides with 𝒯𝒯𝒯𝒯.
Therefore we have: [𝒯𝒯𝒯𝒯�] = [𝒯𝒯𝒯𝒯].

⋆ How can we reconcile these two statements?
There is clearly just one way: it must be that
both [𝒯𝒯𝒯𝒯] = 𝒯𝒯 and [𝒯𝒯𝒯𝒯�] = 𝒯𝒯. In other words, both
𝒯𝒯𝒯𝒯 and 𝒯𝒯𝒯𝒯� have zero area.

⋆ But this is just another way of saying that the
medians 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐴𝐴 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐴𝐴 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 concur!

Closing remark. One proposition, but three
entirely different proofs …. How would you
contrast them?
In a future column, we will discuss an important
tool in the study of concurrence, which allows us
to deduce a vast number of concurrence results in
one stroke.
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