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Trisection of a

60 degree angle’?

Not Quite!

any students on first hearing that “Trisection of
a general angle is not possible using only compass and
straight-edge” immediately set about trying to disprove

this assertion! Curiously, many among them hit upon the
following method (illustrated for a 60° angle).

In the figure, AABC is equilateral, and P and Q are points of
trisection of BC (so BP = PQ = QC). Segments AP and AQ are
drawn. Question. Do these two segments trisect £BAC? Many
students believe that they do. How do we check whether they are
right? Noting that 4BAP = 4CAQ by symmetry, we only need to
compare £BAP and 4PAQ.

B P 0 c

We choose to make the comparison using coordinates. Let

B =(0,0),C = (6,0),A = (3,3V3),P = (2,0) and Q = (4,0).
Then the slopes of AB, AP, AQ and AC are as follows:

slope(4AB) = tan 60° = V3,
slope(AC) = tan 120° = —V/3.
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3V3-0
slope(AP) = ﬁ = 3\/5,

3V3-0
slope(AQ) = ST = —3\/§

Hence, using the ‘angle between two lines’
formula, we get, for ABAP and 4PAQ:

3v3-v3 _ 2v3 1
1+3v3-v3 10 5

-3v3-3v3  -6v3 3
1-3V3-3v3 —26 13
We see right away that ABAP and £PAQ are
unequal (since 1/5 and 3/13 are unequal). But we
can say more: since 1/5 < 3/13, it follows that
4BAP < 4PAQ. (Here we make implicit use of the
fact that for acute angles x and y, if x < y then

tan x < tany, and vice versa. Differently

expressed, tan @ is an increasing function of 6 for
0<0<m/2)

tan 4BAP = X \/§,

tan 4PAQ = x V3.

Thus, 4PAQ exceeds both ABAP and 4QAC. Here
are the actual magnitudes of the angles:

4ZBAP = 4QAC =~ 19.1066°, APAQ =~ 21.7868°.

So 4PAQ exceeds 4£BAP by a fair bit. The method
doesn’t quite work ....

Can we prove this without computation?

Is there a non-computational way of proving that
4BAP < 4PAQ? Itis a nice challenge to find such

hie,

a proof. Note that if we do find one, it will not tell
us by how much the two angles differ.

Here is a possible approach. Consider AABP and
AAPQ. The two triangles have equal bases

(BP = PQ) and the same altitude (namely: the
altitude of AABC). So they have equal area.

Now we invoke another formula: area of a triangle
equals half the product of any two sides and the sine
of the included angle. Applying this to AABP and
AAPQ, which we know have equal area, we get:

1 1
> AB X AP X sin4BAP = > AP X AQ X sin4PAQ,

«~ AB X sin 4BAP = AQ X sin 4PAQ.

Hence AB/AQ = sin 4PAQ/sin BAP. Now
which is greater, AB or AQ? Clearly, it is AB which
is larger. This can be seen from AABQ, in which
3AQB > AABQ (proof: 4AQB > 4ACQ, which
equals 4B Q). Invoking the fact that the larger
angle in a triangle has the larger side opposite it,
we deduce that AB > AQ and so AB/AQ > 1.

Therefore sin 4PAQ/sin 4BAP > 1, and it follows
that 4BAP < 4PAQ. (Once again, we implicitly
make use of a fact from trigonometry: that over
the domain of acute angles, sine is an increasing
function of the angle.)

The reader is invited to find other
non-computational proofs showing that
4BAP < 4PAQ.
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