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Introduction

Elsewhere in this issue is a review of The Sand Reckoner by Gillian
Bradshaw. That review and this article are dedicated to one of
the most celebrated mathematicians in the world. Archimedes is
perhaps most famous for the discovery of the Archimedes
Principle and the invention of levers, pulleys, pumps, military
innovations (like the siege engines) and the Archimedean Screw.
His mathematical contributions include approximations of = and
/3 accurate to several decimal places, proof of the quadrature of
the parabola, formula for the area of a circle, and formulae of
surface areas and volumes of several solid shapes. In this article,
[ have focused on two techniques (called Archimedes’ Methods)
by which he arrived at the formula of the volume of a sphere.

In October 1998, a French family in New York put a
thousand-year-old manuscript up for public auction. This
manuscript, which the family had acquired in the 1920s, turned
out to be a lost Archimedean palimpsest. Byzantine monks in the
13th century had washed the original mathematical text and
reused the parchment for Christian liturgical writings. In the
early 20th century, Johan Heiberg had studied the same
manuscript at Constantinople (present-day Istanbul) and
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identified it for the first time as work by
Archimedes. It disappeared for several years
during the aftermath of the Greco-Turkish War, and
resurfaced in the possession of the French
businessman whose descendants put it up for
auction. From 1999 to 2008, the manuscript was
subject to extensive imaging study and conservation
at the Walters Art Museum in Baltimore in
collaboration with scientists at Rochester Institute
of Technology and Stanford University. Many
Archimedean texts were recovered from this
palimpsest, of which the work on Methods is
especially interesting to many mathematicians.

The Method of Exhaustion

The Method of Exhaustion is a well-known
technique using which the area of a figure can be
found by visualizing it to be composed of
constituent polygons that converge to the area of
the containing shape. It is considered to be the
ancient-Greek equivalent of the modern notion of
limits. Among other results, Archimedes used the
Method of Exhaustion to compute the volume of a
sphere. I have discussed this method below using
modern notation.

Consider the hemisphere in Figure 1. Archimedes
imagined the hemisphere to be formed by the
layering of cylinders inscribed within the solid.
Let the radius of the hemisphere be r, and radii of
each cylinder be 1y, 15,13, ..., 13,. If there are n
cylinders of equal height laid one on top of one
another, it follows that the height of each cylinder
is r/n. By the Pythagorean Theorem:
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Figure 1.
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As the number of cylinders increases, and the
height of each cylinder correspondingly
decreases, the sum of volumes of the cylinders is a
closer and closer approximation to the volume of
the hemisphere. Therefore, as n approaches
infinity, the sum of the volumes of the cylinders
equals the volume V of the hemisphere. That is,
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Substitute r; = r? — (jr/n)? for1 < j < n:
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Now use the formula
124224324+ +n? = n(n+ 1)(2n + 1):
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Since V is half the required volume, the volume of
the sphere with radius r is given by %nr3.

A similar argument can be made to obtain the
same result if the hemisphere is thought to be
circumscribed by a layering of cylinders; see
Figure 2. The solid shape is in fact “sandwiched”
between the inscribed and circumscribed
cylinders. As n tends to infinity, the two stacks of
cylinders converge to the form of the hemisphere.
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Figure 2.

The Method of Equilibrium

Now I will discuss the second technique by which
Archimedes arrived at the same result for the
volume of a sphere. This technique, known as the
Method of Equilibrium, was found in the lost
palimpsest. It sheds light on a very uniquely
Archimedean way of thinking about surface areas
and volumes of solid shapes, and employs an
argument that resonates with the modern notion
of integral calculus.

There has been considerable debate among
mathematicians about which Method of
Archimedes is the superior one. Archimedes
conceptualized notions of limits and integration
well before calculus emerged as a powerful
mathematical tool, so both methods contain ideas
much ahead of their time. Historians of
mathematics such as Howard Eves argue that the
Method of Exhaustion is “sterile” because its
elegance is apparent only if the result is already
known. While this is debatable, the Method of
Equilibrium is unique for Archimedes’ use of
mechanics to prove a purely mathematical result.
Archimedes himself is said to have preferred the
Method of Exhaustion because he felt that it was
mathematically more rigorous. Perhaps this was
born out of his innate preference for pure
mathematics to mechanical inventions. However,
in the words of E.T. Bell, “To a modern all is fair in
love, war, and mathematics.” Maybe the
equilibrium argument is considered more elegant
today because there is something enchanting
when borders between related disciplines melt to

reveal how closely interlinked the disciplines
really are.

To find the volume of a sphere by the Method of
Equilibrium, it helps to think of the solid as cut up
into a large number of very thin strips hung end
to end on an imaginary lever. This proof compares
the moments of two solids when placed on the
lever. Since volume is proportional to mass,
moment of the solid can be defined as the product
of its volume and lever length (the distance from
the point about which the shapes are hung to the
centroid of the volume).

Figure 3 is a cross-sectional view along the
equator of the sphere. Here AO = OB = 2r.
Consider the cylinder and cone of revolution
obtained by rotating rectangle OPSB and triangle
OCB about the AB axis. Suppose thin vertical
slices of thickness Ax are cut from the three solids
at distance x from O. The approximate volumes of
the sections of each solid are deduced to be:

Sphere: The equation of the circular
cross-section of the sphere is
(x—7r)2+y2=r?ie,y? =x2r—x).
Therefore the volume of revolution of the
slice of sphere with thickness Ax and height
yis my?Ax = mx(2r — x)Ax.

Cone: The volume of revolution of the slice of

cone with thickness Ax and height x is mx?Ax.

Cylinder: The volume of revolution of the slice of
cylinder with thickness Ax and height 2r is
r2Ax.

(-2r,0) TA

(r.0)

Figure 3.
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If the slices from the sphere and the cone are
imagined to be stacked at 4, they form a single
point mass. Their combined moment about the
point O is given by:

Sum of volumes of slices of sphere and cone
x length 0A = (mx(2r — x)Ax + mx?Ax)2r

= 4nr?xAx.

The moment about O of the slice cut from the
cylinder (when its position is unchanged) is
given by:

Volume of slice of cylinder
x distance from O to slice = (mr?Ax) * (x)

= rixAx.
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3,4,5..

And other
memorable

triples — Part Ii

n Part I of this article we had showcased the triple (3, 4, 5) by
highlighting some of its properties and some configurations
where it occurred naturally. We now attempt to extend this
to other triples of consecutive integers. To begin with, we study
the two ‘siblings’ of (3, 4, 5), namely, the triples (2, 3,4) and
(4,5, 6). We start first with the elder sibling, (4, 5, 6). (We do
need to show the older ones some respect, don’t we?)

The triple 4, 5, 6

In Figure 1 we see a sketch of a triangle ABC with sides 4,5, 6
(witha = 6, b = 5, ¢ = 4). Is there anything special about the

triangle? Let’s do some exploration using GeoGebra.

A 5 C

Figure 1.
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Figure 1 shows a GeoGebra sketch of the triangle.
We start by measuring the angles of the triangle
(using the tool available in GeoGebra). Here is the
output:

4A = 82.82°, 4B = 55.77°, 4C =41.41°.

Examining the data, we quickly notice that 82.82
is twice 41.41, in other words: 44 = 24C. Right

away we have uncovered something notable and
of interest!

But wait: this relation has been numerically
determined. Could it be the case that if we compute
both angle measures to more decimal places than
shown above, the above relation will turn out to
be only approximate and not exact? How can we
check whether or not 44 is exactly twice 4C?

We can do so using trigonometry. Let us compute
the cosines of all three angles of the triangle using
the cosine rule:

COSA_b2+C2_a2 _25+16—36_1
2bc 2% 20 ’
_4+a?-Db? 16+36-25 9
cosB = T T Ixzm 16
a2 +b2—c2 36+25-16 3
csC=—— b  ~ 2x30 &

To see if 44 = 24C as suggested by the empirical
evidence, we must check whether

cos A = 2 cos? C — 1 (for we have the identity
cos 260 = 2 cos? 8 — 1 which is true for any angle
6). We have:

2 cos? C 1—232 1—9 1—1— A

cos = 2 =3 =3= cos 4,
and since both 44 and AC are acute angles, the
verification is complete. So the relation 4A = 24C
is indeed exact.

D @
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The same property can be proved by a
geometric argument which may be preferred
by some. In Figure 2 (a) we have redrawn the
4-5-6 triangle with the perpendicular BD from
vertex B to side AC. Our first task is to find the
length x of AD. We shall make use of the
Pythagorean theorem to do so. Let h be the
length of BD. Then we have:

h? + x2 = 42,
h? + (5 — x)? = 62,

hence by subtraction: (5 — x)? —x2? = 62 — 42, i.e,
25 —10x = 20. This yields x = 1/2.

Let E be the point on side AC such that AE =1
unit; see Figure 2 (b). Join BE. Since DE = D4, it
follows that BE = BA. Also EC = 5 — 1 = 4 units.
So we have AB = BE = EC. Hence

ABEA = 24BCA, and also 4BEA = 4BAE. It
follows that ABAC = 24BCA, i.e., 44 = 24C.

A Stronger Property

We now prove something much more striking:

Theorem 1. There is only one triple of consecutive
integers with the property that the triangle with
these numbers as its side lengths has one angle
which is twice another one. This is the triple
(4,5,6).

Let the sides of the triangle be n,n + 1,n + 2. Let
the triangle be labelled ABC so thata =n + 2,
b=n+1,c¢c=n.Sincea > b > ¢, we have

4A > 4B > 4C. So if one angle of the triangle is
twice another, one of the following must be true:
(i) 24A = 24B (ii) 4B = 24C (iii) 44 = 24C.

There are now two ways of proceeding. One is to
use the cosine rule. This works, but the algebra is

Figure 2.
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messy. The other, which is more interesting as
well as more efficient, and which we prefer, is to
use a geometric Pythagoras-style theorem which
is striking by itself.

Theorem 2. Let AABC have sides a, b, c. Then the
relation 4A = 24B is true if and only if
a’> = b(b +¢).

Proof of Theorem 2: Forward implication. We
first tackle the statement: if 44 = 24 B, then

a? = b(b + c¢). (This is the ‘only if’ part of the
theorem.) We offer a trigonometric proof of the
result. Let 4B = 0; then 84 = 26 and

4(C = 180° — 36. Hence we have sin A = sin 20
and sin C = sin 36. The sine rule yields:

a b o
sin20  sinf sin36°

From the first equality we get:

—b sin26_2b p ) B_a
a= e cos @, s cosf = T
The second equality yields:
sin 36 3sin6 — 4sin® 6
c=b-— =b- -
sin 6 sin @

=b(3—4sin’9)
=b(4cos’6—1).

Substituting for cos @ in this relation, we get:

a2 a? — b?
C=b(b—2—1>= b ,

~a*=b% +bc=b(b+0),

as claimed.

Proof of Theorem 2: Reverse implication. Now
we tackle the ‘if’ part of the theorem, namely: if
a? = b(b + c), then 44 = 24B. Once again, we
offer a trigonometric proof of the result. We use
the sine rule together with the following beautiful
identity whose proof we leave as an exercise:

sin® A — sin® B = sin(4 + B) sin(A — B).

The sine rule tells us that for any triangle ABC, we
havea/sinA = b/sinB = ¢/sinC = some
constant k. (In fact, k is the circum-diameter of
the triangle, i.e,, it is twice the radius of the
circumcircle. But we do not need this information
right now.)

From the relation a? = b(b + ¢) we get

a? — b? = bc, which tells us that a > b and
therefore that 44 > 4 B. The same relation also
yields, by the sine rule:

sin? A — sin? B = sin B sin C.

Using the trigonometric identity quoted above, we
get:

sin(4 + B) sin(A — B) = sinB sinC.

Since A + B + C = 180°, we have
sin(4A + B) = sinC. Since sin C # 0, we get:

sin(A — B) = sin B.

Since A — B and B lie between 0° and 180° and
have equal sine, they are either equal angles or
they are supplementary angles. The latter
possibility leads to (A — B) + B = 180°, i.e,,

A = 180°, which is absurd. Hence this case does
not hold. It follows that A — B = B, i.e., 44 = 24B.

There is also an elegant geometric proof of the
result (both parts: forward implication as well as
reverse implication), which we shall discuss later.

Proof of Theorem 1. We now use Theorem 2 to
prove Theorem 1. We consider the three
possibilities in turn.

Case (i): If44 = 24B, then a? = b(b + ¢), hence:
m+2)?2=m+1D2n+1),
sn?P+4n+4=2n*+3n+1,
an?—-n—-3=0.
This equation has roots n = %(1 ++/13).
These are not positive integers (or even

rational numbers), so we do not get any
solution from this possibility.

Case (ii): If4B = 24C, then b? = c¢(c +a), hence:
(n+ 1% =n2n+ 2),
~(n—-1DMmn+1)=0.

This yields n = 1. Only the positive sign is
of interest to us. However, the triangle
corresponding to n = 1 has sides 1, 2, 3 and
so is degenerate: it is ‘flat, with angles 180°,
0° and 0°. Note that the solution is not
‘wrong’. For, this triangle has 4B = 0° = 4C,
which means that we do have the relation
4B = 24(C! But it is of no interest to us, so
we move on.
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Case (iii): If 44 = 24C, then a® = c(c + b),

hence:

(n+2)?2=n2n+1),
~n?+4n+4=2n+n,
“n?—3n—-4=0,

~(n+1)(n—-4)=0.
The last equation has roots n = —1 and

n = 4. We finally do get a positive integral
root, n = 4, and this yields a genuine,
well-behaved triangle: a triangle with sides
4,5, 6. This yields a solution to the stated
problem.

[t follows that there is precisely one triangle with
the stated property: the one that has sides 4, 5, 6.

In closing we may say that the triple (4, 5, 6) can
lay its own claim to fame, with its own pleasing
property, just like its better known sibling
(3,4,5).

A Geometric Proof of Theorem 2

Some readers may prefer to see a geometric proof
of Theorem 2 (we had earlier given a proof using
trigonometry). We offer one such proof here.

First we deal with the forward implication:
if 44 = 24B, then a? = b(b + ¢) . The relevant
configuration is shown in Figure 3.

We need an auxiliary construction. Draw a circle
tangent to side BC at B and passing through

vertex A. (The circle may be constructed as
follows: draw a perpendicular to BC through B,
and draw the perpendicular bisector of side AB;
the point where these two lines meet is then the
centre of the desired circle. These auxiliary
construction lines have not been shown in
Figure 3, to avoid a visual clutter.)

Extend side CA beyond vertex A to meet the circle
again at point D. Draw segments BD and AD, as
shown. Let AD have length d. Let ABC = 6; then
4BAC = 20 as per the given data.

From the fact that CB is tangent to the circle at B,
two deductions follow: (i) 4ABC = 4ADB, i.e,
4ADB = 0; this follows from the “angle in the
alternate segment” theorem; (ii) CB? = CA X CD,
i.e., a®? = b(b + d); this is true because CAD is a
secant.

Since 4BAC = 4ADB + AABD, it follows that
AADB = 6. Hence AADB is isosceles, with AD =
AB. So d = c. Combining this with deduction (ii),
above, we see that a? = b(b + ¢), as claimed.

Now for the reverse implication:

if a®> = b(b + ¢), then 44 = 24B . We use the
same figure for the proof, with the same auxiliary
construction. The configuration is depicted in
Figure 4. As earlier, we have drawn a circle tangent
to side BC at B and passing through vertex A; then
we have extended side C A beyond vertex A to meet
the circle again at point D, and drawn segments
BD and AD. Let AD have length d.

C

Figure 3. Given that A = 24B, to show that a? = b(b + ¢)
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B

a C

Figure 4. Given that a2 = b(b + ¢), to show that A = 24B

Since CB is tangent to the circle at B, and CAD is a
secant, we have the following relation:
CB?=CAXCD,ie,a?=b(b+d).

But we also have the given relation a? = b(b + ¢).
Comparing the two relations, we conclude that

¢ =d,lie,AB = AD.Hence 4ABD = 4ADB. And
since 4BAC = 4ABD + 4ADB, it follows that
4BAC = 24ADB.

But we also have 4ABC = £ADB, by the “angle in
the alternate segment” theorem. Hence
ABAC = 24ABC,i.e.,, 4A = 24B, as claimed.

Appendix: Integer triples associated
with this theorem

Associated with the Pythagorean theorem
we have the number theoretic problem of

generating Pythagorean triples. In the same
way, associated with the main result derived

in this article, we have another interesting
number theoretic problem: that of generating
integer triples (a, b, ¢) which satisfy the
equation a? = b(b + ¢). We may want to
impose the additional condition that a, b, ¢

are coprime, just as we did in the case of
Pythagorean triples. We already have one
example of such a triple: (6,4, 5). Are there any
others? Yes; and they are quite easy to find. We
leave this question for the reader to tackle: that
of finding an efficient and effective algorithm for
generating all coprime integer triples (a, b, ¢)
which satisfy the equation a? = b(b + ¢). We
will take up a study of this equation in a
subsequent article.
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