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Introduction
Elsewhere in this issue is a review of The Sand Reckoner by Gillian
Bradshaw. That review and this article are dedicated to one of
the most celebrated mathematicians in the world. Archimedes is
perhaps most famous for the discovery of the Archimedes
Principle and the invention of levers, pulleys, pumps, military
innovations (like the siege engines) and the Archimedean Screw.
His mathematical contributions include approximations of 𝜋𝜋𝜋𝜋 and
√3 accurate to several decimal places, proof of the quadrature of
the parabola, formula for the area of a circle, and formulae of
surface areas and volumes of several solid shapes. In this article,
I have focused on two techniques (called Archimedes’ Methods)
by which he arrived at the formula of the volume of a sphere.
In October 1998, a French family in New York put a
thousand-year-old manuscript up for public auction. This
manuscript, which the family had acquired in the 1920s, turned
out to be a lost Archimedean palimpsest. Byzantine monks in the
13th century had washed the original mathematical text and
reused the parchment for Christian liturgical writings. In the
early 20th century, Johan Heiberg had studied the same
manuscript at Constantinople (present-day Istanbul) and
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��� ��t�od o� ��ui�i�riu�
Now I will discuss the second technique by which
Archimedes arrived at the same result for the
volume of a sphere. This technique, known as the
Method of Equilibrium, was found in the lost
palimpsest. It sheds light on a very uniquely
Archimedean way of thinking about surface areas
and volumes of solid shapes, and employs an
argument that resonates with the modern notion
of integral calculus.
There has been considerable debate among
mathematicians about which Method of
Archimedes is the superior one. Archimedes
conceptualized notions of limits and integration
well before calculus emerged as a powerful
mathematical tool, so both methods contain ideas
much ahead of their time. Historians of
mathematics such as Howard Eves argue that the
Method of Exhaustion is ǲsterileǳ because its
elegance is apparent only if the result is already
known. �hile this is debatable, the Method of
Equilibrium is unique for Archimedes’ use of
mechanics to prove a purely mathematical result.
Archimedes himself is said to have preferred the
Method of Exhaustion because he felt that it was
mathematically more rigorous. Perhaps this was
born out of his innate preference for pure
mathematics to mechanical inventions. However,
in the words of E.T. Bell, ǲTo a modern all is fair in
love, war, and mathematics.ǳ Maybe the
equilibrium argument is considered more elegant
today because there is something enchanting
when borders between related disciplines melt to

reveal how closely interlinked the disciplines
really are.
To ϐind the volume of a sphere by the Method of
Equilibrium, it helps to think of the solid as cut up
into a large number of very thin strips hung end
to end on an imaginary lever. This proof compares
the moments of two solids when placed on the
lever. Since volume is proportional to mass,
moment of the solid can be deϐined as the product
of its volume and lever length (the distance from
the point about which the shapes are hung to the
centroid of the volume).
Figure 3 is a cross-sectional view along the
equator of the sphere. Here ܱܣ ൌ ܤܱ ൌ .ݎʹ
Consider the cylinder and cone of revolution
obtained by rotating rectangle ܤܱܵܲ and triangle
ܤܥܱ about the ܤܣ axis. Suppose thin vertical
slices of thickness ȟݔ are cut from the three solids
at distance ݔ from ܱ. The approximate volumes of
the sections of each solid are deduced to beǣ
����r�ǣ The equation of the circular

cross-section of the sphere is
ሺݔ െ ሻଶݎ  ଶݕ ൌ ,ଶݎ i.e., ଶݕ ൌ ݎʹሺݔ െ .ሻݔ
Therefore the volume of revolution of the
slice of sphere with thickness ȟݔ and height
ݕ is 𝜋𝜋𝜋𝜋ݕଶȟݔ α 𝜋𝜋𝜋𝜋ݔሺʹݎ െ .ݔሻȟݔ

�on�ǣ The volume of revolution of the slice of
conewith thicknessȟݔ and height ݔ is𝜋𝜋𝜋𝜋ݔଶȟݔ.

���ind�rǣ The volume of revolution of the slice of
cylinder with thickness ȟݔ and height ݎʹ is
𝜋𝜋𝜋𝜋ݎଶȟݔ.

Figure �.
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identiϐied it for the ϐirst time as work by
Archimedes. It disappeared for several years
during the aftermath of the Greco-Turkish�ar, and
resurfaced in the possession of the French
businessman whose descendants put it up for
auction. From 1999 to 2008, the manuscript was
sub�ect to extensive imaging study and conservation
at the�alters Art Museum in Baltimore in
collaboration with scientists at �ochester Institute
of Technology and Stanford �niversity. Many
Archimedean texts were recovered from this
palimpsest, of which the work on Methods is
especially interesting to manymathematicians.

��� ��t�od o� ����u�tion
The Method of Exhaustion is a well-known
technique using which the area of a ϐigure can be
found by visualizing it to be composed of
constituent polygons that converge to the area of
the containing shape. It is considered to be the
ancient-Greek equivalent of the modern notion of
limits. Among other results, Archimedes used the
Method of Exhaustion to compute the volume of a
sphere. I have discussed this method below using
modern notation.
Consider the hemisphere in Figure 1. Archimedes
imagined the hemisphere to be formed by the
layering of cylinders inscribed within the solid.
�et the radius of the hemisphere be ,ݎ and radii of
each cylinder be ଵǡݎ ଶǡݎ ଷǡݎ ǥ ǡ .ݎ If there are ݊
cylinders of equal height laid one on top of one
another, it follows that the height of each cylinder
is .Ȁ݊ݎ By the Pythagorean Theoremǣ

ଵݎ ൌ ଶݎ െ ଶݎ
݊ଶ ǡ ଶݎ െ

ሺʹݎሻଶ
݊ଶ ǡ ǥ ǡ

ିଵݎ ൌ ଶݎ െ ሺ݊ െ ͳሻݎଶ
݊ଶ ǡ ݎ ൌ ଶݎ െ ሺ݊ݎሻଶ

݊ଶ Ǥ

Figure 1.

As the number of cylinders increases, and the
height of each cylinder correspondingly
decreases, the sum of volumes of the cylinders is a
closer and closer approximation to the volume of
the hemisphere. Therefore, as ݊ approaches
inϐinity, the sum of the volumes of the cylinders
equals the volume ܸ of the hemisphere. That is,

ܸ ൌ lim
՜ஶ

൬𝜋𝜋𝜋𝜋ݎଶଵ
ݎ
݊  𝜋𝜋𝜋𝜋ݎଶଶ

ݎ
݊  𝜋𝜋𝜋𝜋ݎଶଷ

ݎ
݊      𝜋𝜋𝜋𝜋ݎଶ

ݎ
݊൰

ൌ lim
՜ஶ

𝜋𝜋𝜋𝜋 ݎሺ݊ݎ
ଶ
ଵ  ଶଶݎ  ଶଷݎ      ଶݎ ሻǤ

Substitute ݎ ൌ ଶݎ െ ሺ݆ݎȀ݊ሻଶ for ͳ  ݆  ݊ǣ

ܸ ൌ lim
՜ஶ

𝜋𝜋𝜋𝜋ݎ
ଷ

݊ ቆ݊ െ ሺͳଶ  ʹଶ  3ଶ      ݊ଶሻ
݊ଶ ቇ

ൌ 𝜋𝜋𝜋𝜋ݎଷ െ 𝜋𝜋𝜋𝜋ݎଷ lim
՜ஶ

ͳ
݊ଷ ൫ͳ

ଶ  ʹଶ  3ଶ      ݊ଶ൯ Ǥ

Now use the formula
ͳଶ  ʹଶ  3ଶ      ݊ଶ ൌ ଵ

݊ሺ݊  ͳሻሺʹ݊  ͳሻǣ

ܸ ൌ 𝜋𝜋𝜋𝜋ݎଷ െ 𝜋𝜋𝜋𝜋ݎଷ lim
՜ஶ

ቆ ͳ
݊ଷ

݊ሺ݊  ͳሻሺʹ݊  ͳሻ
 ቇ

ൌ 𝜋𝜋𝜋𝜋ݎଷ െ 𝜋𝜋𝜋𝜋ݎଷ lim
՜ஶ

ቆ ͳ
݊ଷ ቆ

݊ଷ
3  ݊ଶ

ʹ  ݊
ቇቇ

ൌ 𝜋𝜋𝜋𝜋ݎଷ െ 𝜋𝜋𝜋𝜋ݎଷ
3 ൌ ʹ𝜋𝜋𝜋𝜋ݎଷ

3 Ǥ

Since ܸ is half the required volume, the volume of
the sphere with radius ݎ is given by ସ

ଷ𝜋𝜋𝜋𝜋ݎଷ.
A similar argument can be made to obtain the
same result if the hemisphere is thought to be
circumscribed by a layering of cylindersǢ see
Figure 2. The solid shape is in fact ǲsandwichedǳ
between the inscribed and circumscribed
cylinders. As ݊ tends to inϐinity, the two stacks of
cylinders converge to the form of the hemisphere.

Figure 2.
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And other
memorable
triples – Part II

InPart I of this article we had showcased the triple (3, 4, 5) by
highlighting some of its properties and some con�igurations
where it occurred naturally. We now attempt to extend this

to other triples of consecutive integers. To begin with, we study
the two ‘siblings’ of (3, 4, 5), namely, the triples (2, 3, 4) and
(4, 5, 6). We start �irst with the elder sibling, (4, 5, 6). (We do
need to show the older ones some respect, don’t we?)

The triple 4, 5, 6
In Figure 1 we see a sketch of a triangle 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 with sides 4, 5, 6
(with 𝑎𝑎𝑎𝑎 𝑎𝑎 6, 𝑏𝑏𝑏𝑏 𝑎𝑎 5, 𝑐𝑐𝑐𝑐 𝑎𝑎 4). Is there anything special about the
triangle? Let’s do some exploration using GeoGebra.

A C

B

5

4
6

Figure 1.

Keywords: Triangle, consecutive integers, triple, double angle, sine rule,
cosine rule, Pythagoras
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If the slices from the sphere and the cone are
imagined to be stacked at ,ܣ they form a single
point mass. Their combined moment about the
point ܱ is given byǣ

Sum of volumes of slices of sphere and cone
ൈ length ܣܱ ൌ ሺ𝜋𝜋𝜋𝜋ݔሺʹݎ െ ݔሻȟݔ  𝜋𝜋𝜋𝜋ݔଶȟݔሻʹݎ
ൌ Ͷ𝜋𝜋𝜋𝜋ݎଶݔȟݔǤ

The moment about ܱ of the slice cut from the
cylinder (when its position is unchanged) is
given byǣ

�olume of slice of cylinder
ൈ distance from ܱ to slice ൌ ሺ𝜋𝜋𝜋𝜋ݎଶȟݔሻ כ ሺݔሻ
ൌ 𝜋𝜋𝜋𝜋ݎଶݔȟݔǤ

Therefore, the moment about ܱ of the slices
of the cone and sphere is Ͷ times the moment
about ܱ of the slice of the cylinder. �hen a
large number of such slices are added
together, the following expression is
obtainedǣ

ݎʹ ൈ volume of sphere Ϊ volume of cone
ൌ Ͷݎ ൈ volume of cylinderǤ

Here, Ͷݎ is the length of the lever arm. Since the
volume of the cone is known to be గሺଶሻయ

ଷ and that
of the cylinder to be ሺʹݎሻ𝜋𝜋𝜋𝜋ݎଶ ൌ ʹ𝜋𝜋𝜋𝜋ݎଷ, we getǣ

ݎʹ ൈ volume of sphere Ϊ ͺ𝜋𝜋𝜋𝜋ݎଷ
3 ൌ ͺ𝜋𝜋𝜋𝜋ݎସǤ

Therefore, the volume of the sphere is ସగయ
ଷ Ǥ
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messy. The other, which is more interesting as
well as more ef�icient, and which we prefer, is to
use a geometric PythagorasǦstyle theorem which
is striking by itself.
The�re� ʹǤ �et ᇞ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 have sides 𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐Ǥ Then the
relation 𝐴𝐴𝐴𝐴ע 𝑎𝑎 𝐴𝐴𝐴𝐴ע2 is true i� and only i�
𝑎𝑎𝑎𝑎ଶ 𝑎𝑎 𝑏𝑏𝑏𝑏(𝑏𝑏𝑏𝑏  𝑐𝑐𝑐𝑐)Ǥ
�r��� �� The�re� ʹǣ 	�r��r� i�pli��ti��Ǥ We
�irst tackle the statementǣ if 𝐴𝐴𝐴𝐴ע 𝑎𝑎 ,𝐴𝐴𝐴𝐴ע2 then
𝑎𝑎𝑎𝑎ଶ 𝑎𝑎 𝑏𝑏𝑏𝑏(𝑏𝑏𝑏𝑏  𝑐𝑐𝑐𝑐). (This is the ‘only if ’ part of the
theorem.) We offer a trigonometric proof of the
result. Let 𝐴𝐴𝐴𝐴ע 𝑎𝑎 Ǣߠ then 𝐴𝐴𝐴𝐴ע 𝑎𝑎 ߠ2 and
𝐴𝐴𝐴𝐴ע 𝑎𝑎 ͳͺͲל െ .ߠ3 �ence we have sin𝐴𝐴𝐴𝐴 𝑎𝑎 sin ߠ2
and sin𝐴𝐴𝐴𝐴 𝑎𝑎 sin3ߠ. The sine rule yieldsǣ

𝑎𝑎𝑎𝑎
sin ߠ2 𝑎𝑎 𝑏𝑏𝑏𝑏

sinߠ 𝑎𝑎 𝑐𝑐𝑐𝑐
sin3ߠ Ǥ

From the �irst e�uality we getǣ

𝑎𝑎𝑎𝑎 𝑎𝑎 𝑏𝑏𝑏𝑏 ڄ sin ߠsinߠ2 𝑎𝑎 2𝑏𝑏𝑏𝑏 cosߠ,  cosߠ 𝑎𝑎 𝑎𝑎𝑎𝑎
2𝑏𝑏𝑏𝑏 Ǥ

The second e�uality yieldsǣ

𝑐𝑐𝑐𝑐 𝑎𝑎 𝑏𝑏𝑏𝑏 ڄ sin3ߠsinߠ 𝑎𝑎 𝑏𝑏𝑏𝑏 ڄ 3 sinߠ െ 4 sinଷ ߠ
sinߠ

𝑎𝑎 𝑏𝑏𝑏𝑏 ൫3 െ 4 sinଶ ൯ߠ
𝑎𝑎 𝑏𝑏𝑏𝑏 (4 cosଶ ߠ െ ͳ) Ǥ

�ubstituting for cosߠ in this relation, we getǣ

𝑐𝑐𝑐𝑐 𝑎𝑎 𝑏𝑏𝑏𝑏 ቆ𝑎𝑎𝑎𝑎
ଶ

𝑏𝑏𝑏𝑏ଶ െ ͳቇ 𝑎𝑎 𝑎𝑎𝑎𝑎ଶ െ 𝑏𝑏𝑏𝑏ଶ
𝑏𝑏𝑏𝑏 ,

 𝑎𝑎𝑎𝑎ଶ 𝑎𝑎 𝑏𝑏𝑏𝑏ଶ  𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐 𝑎𝑎 𝑏𝑏𝑏𝑏(𝑏𝑏𝑏𝑏  𝑐𝑐𝑐𝑐),

as claimed.
�r��� �� The�re� ʹǣ �e�er�e i�pli��ti��Ǥ �ow
we tackle the ‘if ’ part of the theorem, namelyǣ if
𝑎𝑎𝑎𝑎ଶ 𝑎𝑎 𝑏𝑏𝑏𝑏(𝑏𝑏𝑏𝑏  𝑐𝑐𝑐𝑐), then 𝐴𝐴𝐴𝐴ע 𝑎𝑎 .𝐴𝐴𝐴𝐴ע2 �nce again, we
offer a trigonometric proof of the result. We use
the sine rule together with the following beautiful
identity whose proof we leave as an exerciseǣ

sinଶ 𝐴𝐴𝐴𝐴 െ sinଶ 𝐴𝐴𝐴𝐴 𝑎𝑎 sin(𝐴𝐴𝐴𝐴  𝐴𝐴𝐴𝐴) sin(𝐴𝐴𝐴𝐴 െ 𝐴𝐴𝐴𝐴)Ǥ

The sine rule tells us that for any triangle 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, we
have 𝑎𝑎𝑎𝑎Ȁ sin𝐴𝐴𝐴𝐴 𝑎𝑎 𝑏𝑏𝑏𝑏Ȁ sin𝐴𝐴𝐴𝐴 𝑎𝑎 𝑐𝑐𝑐𝑐Ȁ sin𝐴𝐴𝐴𝐴 𝑎𝑎 some
constant ݇. (In fact, ݇ is the circumǦdiameter of
the triangle, i.e., it is twice the radius of the
circumcircle. �ut we do not need this information
right now.)

From the relation 𝑎𝑎𝑎𝑎ଶ 𝑎𝑎 𝑏𝑏𝑏𝑏(𝑏𝑏𝑏𝑏  𝑐𝑐𝑐𝑐)we get
𝑎𝑎𝑎𝑎ଶ െ 𝑏𝑏𝑏𝑏ଶ 𝑎𝑎 𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐, which tells us that 𝑎𝑎𝑎𝑎  𝑏𝑏𝑏𝑏 and
therefore that 𝐴𝐴𝐴𝐴ע  .𝐴𝐴𝐴𝐴ע The same relation also
yields, by the sine ruleǣ

sinଶ 𝐴𝐴𝐴𝐴 െ sinଶ 𝐴𝐴𝐴𝐴 𝑎𝑎 sin𝐴𝐴𝐴𝐴 sin𝐴𝐴𝐴𝐴Ǥ
�sing the trigonometric identity �uoted above, we
getǣ

sin(𝐴𝐴𝐴𝐴  𝐴𝐴𝐴𝐴) sin(𝐴𝐴𝐴𝐴 െ 𝐴𝐴𝐴𝐴) 𝑎𝑎 sin𝐴𝐴𝐴𝐴 sin𝐴𝐴𝐴𝐴Ǥ
�ince 𝐴𝐴𝐴𝐴  𝐴𝐴𝐴𝐴  𝐴𝐴𝐴𝐴 𝑎𝑎 ͳͺͲל, we have
sin(𝐴𝐴𝐴𝐴  𝐴𝐴𝐴𝐴) 𝑎𝑎 sin𝐴𝐴𝐴𝐴. �ince sin𝐴𝐴𝐴𝐴 ് Ͳ, we getǣ

sin(𝐴𝐴𝐴𝐴 െ 𝐴𝐴𝐴𝐴) 𝑎𝑎 sin𝐴𝐴𝐴𝐴Ǥ
�ince 𝐴𝐴𝐴𝐴 െ 𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴 lie between Ͳל and ͳͺͲל and
have e�ual sine, they are either e�ual angles or
they are supplementary angles. The latter
possibility leads to (𝐴𝐴𝐴𝐴 െ 𝐴𝐴𝐴𝐴)  𝐴𝐴𝐴𝐴 𝑎𝑎 ͳͺͲל, i.e.,
𝐴𝐴𝐴𝐴 𝑎𝑎 ͳͺͲל, which is absurd. �ence this case does
not hold. It follows that 𝐴𝐴𝐴𝐴 െ 𝐴𝐴𝐴𝐴 𝑎𝑎 𝐴𝐴𝐴𝐴, i.e., 𝐴𝐴𝐴𝐴ע 𝑎𝑎 .𝐴𝐴𝐴𝐴ע2
There is also an elegant geometric proof of the
result (both partsǣ forward implication as well as
reverse implication), which we shall discuss later.
�r��� �� The�re� ͳǤ We now use Theorem ʹ to
prove Theorem 1. We consider the three
possibilities in turn.
���e ȋiȌǣ If 𝐴𝐴𝐴𝐴ע 𝑎𝑎 ,𝐴𝐴𝐴𝐴ע2 then 𝑎𝑎𝑎𝑎ଶ 𝑎𝑎 𝑏𝑏𝑏𝑏(𝑏𝑏𝑏𝑏  𝑐𝑐𝑐𝑐), henceǣ

(݊  2)ଶ 𝑎𝑎 (݊  ͳ)(2݊  ͳ),
 ݊ଶ  4݊  4 𝑎𝑎 2݊ଶ  3݊  ͳ,
 ݊ଶ െ ݊ െ 3 𝑎𝑎 ͲǤ

This e�uation has roots ݊ 𝑎𝑎 ଵ
ଶ(ͳ േ ξͳ3).

These are not positive integers (or even
rational numbers), so we do not get any
solution from this possibility.

���e ȋiiȌǣ Ifע𝐴𝐴𝐴𝐴 𝑎𝑎 ,𝐴𝐴𝐴𝐴ע2 then 𝑏𝑏𝑏𝑏ଶ 𝑎𝑎 𝑐𝑐𝑐𝑐(𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎), henceǣ
(݊  ͳ)ଶ 𝑎𝑎 ݊(2݊  2),

 (݊ െ ͳ)(݊  ͳ) 𝑎𝑎 ͲǤ
This yields ݊ 𝑎𝑎 േͳ. �nly the positive sign is
of interest to us. �owever, the triangle
corresponding to ݊ 𝑎𝑎 ͳ has sides ͳ, 2, 3 and
so is degenerateǣ it is ‘�lat’, with angles ͳͺͲל,
Ͳל and Ͳל. �ote that the solution is not
‘wrong’. For, this triangle has 𝐴𝐴𝐴𝐴ע 𝑎𝑎 Ͳל 𝑎𝑎 ,𝐴𝐴𝐴𝐴ע
which means that we do have the relation
𝐴𝐴𝐴𝐴ע 𝑎𝑎 𝐴𝐴𝐴𝐴Ǩע2 �ut it is of no interest to us, so
we move on.
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Figure 1 shows a GeoGebra sketch of the triangle.
We start by measuring the angles of the triangle
(using the tool available in GeoGebra). �ere is the
outputǣ

𝐴𝐴𝐴𝐴ע 𝑎𝑎 ͺ2Ǥͺ2ל, 𝐴𝐴𝐴𝐴ע 𝑎𝑎 55Ǥל, 𝐴𝐴𝐴𝐴ע 𝑎𝑎 4ͳǤ4ͳלǤ

�xamining the data, we �uickly notice that ͺ2Ǥͺ2
is twice 4ͳǤ4ͳ, in other wordsǣ 𝐴𝐴𝐴𝐴ע 𝑎𝑎 .𝐴𝐴𝐴𝐴ע2 �ight
away we have uncovered something notable and
of interestǨ
�ut waitǣ this relation has been nu�erically
deter�ined. �ould it be the case that if we compute
both angle measures to more decimal places than
shown above, the above relation will turn out to
be only approximate and not exact? �ow can we
check whether or not 𝐴𝐴𝐴𝐴ע is e�actly twice ?𝐴𝐴𝐴𝐴ע
We can do so using trigonometry. Let us compute
the cosines of all three angles of the triangle using
the cosine ruleǣ

cos𝐴𝐴𝐴𝐴 𝑎𝑎 𝑏𝑏𝑏𝑏ଶ  𝑐𝑐𝑐𝑐ଶ െ 𝑎𝑎𝑎𝑎ଶ
2𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐 𝑎𝑎 25  ͳ6 െ 36

2 ൈ 2Ͳ 𝑎𝑎 ͳ
ͺ,

cos𝐴𝐴𝐴𝐴 𝑎𝑎 𝑐𝑐𝑐𝑐ଶ  𝑎𝑎𝑎𝑎ଶ െ 𝑏𝑏𝑏𝑏ଶ
2𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎 𝑎𝑎 ͳ6  36 െ 25

2 ൈ 24 𝑎𝑎 ͻ
ͳ6,

cos𝐴𝐴𝐴𝐴 𝑎𝑎 𝑎𝑎𝑎𝑎ଶ  𝑏𝑏𝑏𝑏ଶ െ 𝑐𝑐𝑐𝑐ଶ
2𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 𝑎𝑎 36  25 െ ͳ6

2 ൈ 3Ͳ 𝑎𝑎 3
4Ǥ

To see if 𝐴𝐴𝐴𝐴ע 𝑎𝑎 𝐴𝐴𝐴𝐴ע2 as suggested by the empirical
evidence, we must check whether
cos𝐴𝐴𝐴𝐴 𝑎𝑎 2 cosଶ 𝐴𝐴𝐴𝐴 െ ͳ (for we have the identity
cos ߠ2 𝑎𝑎 2 cosଶ ߠ െ ͳwhich is true for any angle
.(ߠ We haveǣ

2 cosଶ 𝐴𝐴𝐴𝐴 െ ͳ 𝑎𝑎 2ቆ34ቇ
ଶ
െ ͳ 𝑎𝑎 ͻ

ͺ െ ͳ 𝑎𝑎 ͳ
ͺ 𝑎𝑎 cos𝐴𝐴𝐴𝐴,

and since both 𝐴𝐴𝐴𝐴ע and 𝐴𝐴𝐴𝐴ע are acute angles, the
veri�ication is complete. �o the relation 𝐴𝐴𝐴𝐴ע 𝑎𝑎 𝐴𝐴𝐴𝐴ע2
is indeed e�actǤ

The same property can be proved by a
geometric argument which may be preferred
by some. In Figure ʹ (a) we have redrawn the
ͶǦͷǦ triangle with the perpendicular 𝐴𝐴𝐴𝐴ܦ from
vertex 𝐴𝐴𝐴𝐴 to side 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. �ur �irst task is to �ind the
length ݔ of 𝐴𝐴𝐴𝐴ܦ. We shall make use of the
Pythagorean theorem to do so. Let ݄ be the
length of 𝐴𝐴𝐴𝐴ܦ. Then we haveǣ

݄ଶ  ଶݔ 𝑎𝑎 4ଶ,
݄ଶ  (5 െ ଶ(ݔ 𝑎𝑎 6ଶ,

hence by subtractionǣ (5 െ ଶ(ݔ െ ଶݔ 𝑎𝑎 6ଶ െ 4ଶ, i.e.,
25 െ ͳͲݔ 𝑎𝑎 2Ͳ. This yields ݔ 𝑎𝑎 ͳȀ2.
Let ܧ be the point on side 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 such that 𝐴𝐴𝐴𝐴ܧ 𝑎𝑎 ͳ
unitǢ see Figure ʹ (b). oin 𝐴𝐴𝐴𝐴ܧ. �ince ܧܦ 𝑎𝑎 ,𝐴𝐴𝐴𝐴ܦ it
follows that 𝐴𝐴𝐴𝐴ܧ 𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. �lso 𝐴𝐴𝐴𝐴ܧ 𝑎𝑎 5 െ ͳ 𝑎𝑎 4 units.
�o we have 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑎𝑎 𝐴𝐴𝐴𝐴ܧ 𝑎𝑎 .𝐴𝐴𝐴𝐴ܧ �ence
𝐴𝐴𝐴𝐴ܧ𝐴𝐴𝐴𝐴ע 𝑎𝑎 ,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ע2 and also 𝐴𝐴𝐴𝐴ܧ𝐴𝐴𝐴𝐴ע 𝑎𝑎 .ܧ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ע It
follows that 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ע 𝑎𝑎 ,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ע2 i.e., 𝐴𝐴𝐴𝐴ע 𝑎𝑎 .𝐴𝐴𝐴𝐴ע2

� �tr���er �r�pert�
We now prove something much more strikingǣ
The�re� ͳǤ There is only one triple o� consecutive
integers �ith the property that the triangle �ith
these nu�bers as its side lengths has one angle
�hich is t�ice another oneǤ This is the triple
(4, 5, 6)Ǥ
Let the sides of the triangle be ݊, ݊  ͳ, ݊  2. Let
the triangle be labelled 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 so that 𝑎𝑎𝑎𝑎 𝑎𝑎 ݊  2,
𝑏𝑏𝑏𝑏 𝑎𝑎 ݊  ͳ, 𝑐𝑐𝑐𝑐 𝑎𝑎 ݊. �ince 𝑎𝑎𝑎𝑎  𝑏𝑏𝑏𝑏  𝑐𝑐𝑐𝑐, we have
𝐴𝐴𝐴𝐴ע  𝐴𝐴𝐴𝐴ע  .𝐴𝐴𝐴𝐴ע �o if one angle of the triangle is
twice another, one of the following must be trueǣ
(i) 𝐴𝐴𝐴𝐴ע 𝑎𝑎 𝐴𝐴𝐴𝐴ע2 (ii) 𝐴𝐴𝐴𝐴ע 𝑎𝑎 𝐴𝐴𝐴𝐴ע2 (iii) 𝐴𝐴𝐴𝐴ע 𝑎𝑎 .𝐴𝐴𝐴𝐴ע2
There are now two ways of proceeding. �ne is to
use the cosine rule. This works, but the algebra is
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�ince 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is tangent to the circle at 𝐴𝐴𝐴𝐴, and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ܦ is a
secant, we have the following relationǣ
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ଶ 𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ൈ 𝐴𝐴𝐴𝐴ܦ, i.e., 𝑎𝑎𝑎𝑎ଶ 𝑎𝑎 𝑏𝑏𝑏𝑏(𝑏𝑏𝑏𝑏  ݀).
�ut we also have the given relation 𝑎𝑎𝑎𝑎ଶ 𝑎𝑎 𝑏𝑏𝑏𝑏(𝑏𝑏𝑏𝑏  𝑐𝑐𝑐𝑐).
�omparing the two relations, we conclude that
𝑐𝑐𝑐𝑐 𝑎𝑎 ݀, i.e., 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑎𝑎 𝐴𝐴𝐴𝐴ܦ. �ence ܦ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ע 𝑎𝑎 .𝐴𝐴𝐴𝐴ܦ𝐴𝐴𝐴𝐴ע �nd
since 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ע 𝑎𝑎 ܦ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ע  ,𝐴𝐴𝐴𝐴ܦ𝐴𝐴𝐴𝐴ע it follows that
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ע 𝑎𝑎 .𝐴𝐴𝐴𝐴ܦ𝐴𝐴𝐴𝐴ע2
�ut we also have 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ע 𝑎𝑎 ,𝐴𝐴𝐴𝐴ܦ𝐴𝐴𝐴𝐴ע by the ǲangle in
the alternate segmentǳ theorem. �ence
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ע 𝑎𝑎 ,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ע2 i.e., 𝐴𝐴𝐴𝐴ע 𝑎𝑎 ,𝐴𝐴𝐴𝐴ע2 as claimed.

�ppe��i�ǣ ��te�er triple� �����i�te�
�ith thi� the�re�
�ssociated with the Pythagorean theorem
we have the number theoretic problem of

generating Pythagorean triples. In the same
way, associated with the main result derived
in this article, we have another interesting
number theoretic problemǣ that of generating
integer triples (𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐) which satisfy the
e�uation 𝑎𝑎𝑎𝑎ଶ 𝑎𝑎 𝑏𝑏𝑏𝑏(𝑏𝑏𝑏𝑏  𝑐𝑐𝑐𝑐). We may want to
impose the additional condition that 𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐
are coprime, �ust as we did in the case of
Pythagorean triples. We already have one
example of such a tripleǣ (6, 4, 5). �re there any
others? �esǢ and they are �uite easy to �ind. We
leave this �uestion for the reader to tackleǣ that
of �inding an ef�icient and effective algorithm for
generating all coprime integer triples (𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐)
which satisfy the e�uation 𝑎𝑎𝑎𝑎ଶ 𝑎𝑎 𝑏𝑏𝑏𝑏(𝑏𝑏𝑏𝑏  𝑐𝑐𝑐𝑐). We
will take up a study of this e�uation in a
subse�uent article.
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���e ȋiiiȌǣ If 𝐴𝐴𝐴𝐴ע 𝑎𝑎 ,𝐴𝐴𝐴𝐴ע2 then 𝑎𝑎𝑎𝑎ଶ 𝑎𝑎 𝑐𝑐𝑐𝑐(𝑐𝑐𝑐𝑐  𝑏𝑏𝑏𝑏),
henceǣ

(݊  2)ଶ 𝑎𝑎 ݊(2݊  ͳ),
 ݊ଶ  4݊  4 𝑎𝑎 2݊ଶ  ݊,
 ݊ଶ െ 3݊ െ 4 𝑎𝑎 Ͳ,

 (݊  ͳ)(݊ െ 4) 𝑎𝑎 ͲǤ

The last e�uation has roots ݊ 𝑎𝑎 െͳ and
݊ 𝑎𝑎 4. We �inally do get a positive integral
root, ݊ 𝑎𝑎 4, and this yields a genuine,
wellǦbehaved triangleǣ a triangle with sides
4, 5, 6. This yields a solution to the stated
problem.

It follows that there is precisely one triangle with
the stated propertyǣ the one that has sides 4, 5, 6.
In closing we may say that the triple (4, 5, 6) can
lay its own claim to fame, with its own pleasing
property, �ust like its better known sibling
(3, 4, 5).

� 
e��etri� �r��� �� The�re� ʹ
�ome readers may prefer to see a geo�etric proof
of Theorem ʹ (we had earlier given a proof using
trigonometry). We offer one such proof here.
First we deal with the forward implicationǣ
if 𝐴𝐴𝐴𝐴ע 𝑎𝑎 ,𝐴𝐴𝐴𝐴ע2 then 𝑎𝑎𝑎𝑎ଶ 𝑎𝑎 𝑏𝑏𝑏𝑏(𝑏𝑏𝑏𝑏  𝑐𝑐𝑐𝑐) . The relevant
con�iguration is shown in Figure ͵.
We need an auxiliary construction. �raw a circle
tangent to side 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 at 𝐴𝐴𝐴𝐴 and passing through

vertex 𝐴𝐴𝐴𝐴. (The circle may be constructed as
followsǣ draw a perpendicular to 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 through 𝐴𝐴𝐴𝐴,
and draw the perpendicular bisector of side 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴Ǣ
the point where these two lines meet is then the
centre of the desired circle. These auxiliary
construction lines have not been shown in
Figure ͵, to avoid a visual clutter.)
�xtend side 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 beyond vertex 𝐴𝐴𝐴𝐴 to meet the circle
again at point .ܦ �raw segments 𝐴𝐴𝐴𝐴ܦ and 𝐴𝐴𝐴𝐴ܦ, as
shown. Let 𝐴𝐴𝐴𝐴ܦ have length ݀. Let 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ע 𝑎𝑎 Ǣߠ then
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ע 𝑎𝑎 ߠ2 as per the given data.
From the fact that 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is tangent to the circle at 𝐴𝐴𝐴𝐴,
two deductions followǣ (i) 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ע 𝑎𝑎 ,𝐴𝐴𝐴𝐴ܦ𝐴𝐴𝐴𝐴ע i.e.,
𝐴𝐴𝐴𝐴ܦ𝐴𝐴𝐴𝐴ע 𝑎𝑎 Ǣߠ this follows from the ǲangle in the
alternate segmentǳ theoremǢ (ii) 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ଶ 𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ൈ 𝐴𝐴𝐴𝐴ܦ,
i.e., 𝑎𝑎𝑎𝑎ଶ 𝑎𝑎 𝑏𝑏𝑏𝑏(𝑏𝑏𝑏𝑏  ݀)Ǣ this is true because 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ܦ is a
secant.
�ince 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ע 𝑎𝑎 𝐴𝐴𝐴𝐴ܦ𝐴𝐴𝐴𝐴ע  ,ܦ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ע it follows that
𝐴𝐴𝐴𝐴ܦ𝐴𝐴𝐴𝐴ע 𝑎𝑎 .ߠ �ence ᇞ𝐴𝐴𝐴𝐴ܦ𝐴𝐴𝐴𝐴 is isosceles, with 𝐴𝐴𝐴𝐴ܦ 𝑎𝑎
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. �o ݀ 𝑎𝑎 𝑐𝑐𝑐𝑐. �ombining this with deduction (ii),
above, we see that 𝑎𝑎𝑎𝑎ଶ 𝑎𝑎 𝑏𝑏𝑏𝑏(𝑏𝑏𝑏𝑏  𝑐𝑐𝑐𝑐), as claimed.
�ow for the reverse implicationǣ
if 𝑎𝑎𝑎𝑎ଶ 𝑎𝑎 𝑏𝑏𝑏𝑏(𝑏𝑏𝑏𝑏  𝑐𝑐𝑐𝑐), then 𝐴𝐴𝐴𝐴ע 𝑎𝑎 𝐴𝐴𝐴𝐴ע2 . We use the
same �igure for the proof, with the same auxiliary
construction. The con�iguration is depicted in
Figure Ͷ. �s earlier, we have drawn a circle tangent
to side 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 at 𝐴𝐴𝐴𝐴 and passing through vertex 𝐴𝐴𝐴𝐴Ǣ then
we have extended side 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 beyond vertex 𝐴𝐴𝐴𝐴 to meet
the circle again at point ,ܦ and drawn segments
𝐴𝐴𝐴𝐴ܦ and 𝐴𝐴𝐴𝐴ܦ. Let 𝐴𝐴𝐴𝐴ܦ have length ݀.
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