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of a Triangle
. . . is not hard to do!

In the March 2014 issue of At Right Angles, the article “A Fair Division” presented 
a study of a problem involving a geometrical division. A plot of land in the form 
of a scalene triangle is to be divided, as per the dictates of a whimsical will, into 
two parts having equal area as well as equal perimeter, using a straight dividing 
line. A simple argument shows that there always exists such a line; see [2]. In the 
mathematical literature, such a line has been called the equalizer of the triangle.  
It is known that any triangle has 1, 2 or 3 equalizers; see [4]. In this article we 
prove two results related to the equalizers.

Shailesh Shirali

In mathematics, breaking up . . .
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The results mentioned in the preamble above are not only 
beautiful but remarkable as well, packing a good deal of 
‘surprise value’. Here they are: 

Theorem 1. An equalizer of a triangle necessarily passes through 
its incentre.

Theorem 2. A line passing through the incentre of a triangle 
divides its perimeter and area in the same ratio.

Theorem 1 is a known result (see [1], [3], [5]). We have not seen 
Theorem 2 anywhere in the literature. The proofs of both the 
theorems are easy to find. We invite you to find your own proofs 
before reading ahead.
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Proof of Theorem 2. The two results are proved
in nearly the same way, but we choose to prove

with incentre , with an arbitrary line ℓ through .
This line must pass through some two sides of the
triangle, and we shall suppose them to be and

. Let the points of intersection of ℓ with and
be and respectively; let and

. The theorem then claims the following:
Area of

Area of quadrilateral
= .

This may be written in the following equivalent
form:

Area of
Area of

= .

Let be the perimeter of .
Then we must show the following:

Area of
Area of

= .

Consider the fraction on the right side.
Multiplying both the numerator and denominator
by the in-radius , we get the following:

= = .

In the last expression, note that is the area of
(because if we treat as the base,

then its altitude is ) and, similarly, is the
area of . Hence is the area of

. Also, is the area of . (This is a
known formula. To prove it, note that the area of

is the sum of the areas of , and
. Now treat , and as the bases of

these triangles, and note that all three triangles
have the same altitude,
proof.) Hence the expression is equal to the ratio

Area of
Area of

.

But that is just what we wanted to show! Hence,
Theorem 2 is proved.

Proof of Theorem 1. We adopt a very similar
strategy. Let the line ℓ bisect the perimeter as
well as the area of . As earlier, we argue that
ℓ must intersect some two sides of the triangle; let
them be and , and let the points of
intersection of ℓ with these two sides be and
respectively. Let and .

The fact that ℓ is an equalizer implies that
and . Let the internal bisector

of meet ℓ at . We must then show that is
the incentre of               (See Figure 2.).

From , drop perpendiculars and to and
respectively. Since lies on the bisector of ,

it follows that ; let their common length
be . To show that is the incentre of is
equivalent to showing that equals the in-radius

of , and this is what we shall now show.

The areas of and are and
respectively, so the area of is .
Since , it follows that the area of is

. But since ℓ is an equalizer, the area of
is half the area of ; hence the area of
is . But the area of is also equal to . It
follows that and hence that is the incentre
of the triangle. Thus the equalizer passes through
the incentre of the triangle, as claimed.
Locating the Equalizers.  A candidate line ℓ for 
the post of equalizer of a triangle ABC must pass 
through some two sides of the triangle, say AB & AC. 
Let ℓ cut these two sides at P and Q respectively,
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follows that and hence that is the incentre
of the triangle. Thus the equalizer passes through
the incentre of the triangle, as claimed.
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This line must pass through some two sides of the
triangle, and we shall suppose them to be and

Theorem 2 first. Figure 1 shows a triangle

Figure 1
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Figure 2

and let 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴, 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴. As ℓ is an equalizer, we
have 𝐴𝐴 𝑥 𝐴𝐴 𝐴 𝑥𝑥 (where 2𝑥𝑥 𝐴 𝑠𝑠 𝑥 𝑠𝑠 𝑥 𝑠𝑠 is the
perimeter of the triangle) and 𝐴𝐴𝐴𝐴 𝐴 �

�𝑠𝑠𝑠𝑠. Hence an
equalizer passing through sides 𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴 exists
if and only if the equations 𝐴𝐴𝐴𝐴 𝐴 �

�𝑠𝑠𝑠𝑠, 𝐴𝐴 𝑥 𝐴𝐴 𝐴 𝑥𝑥
yield values for 𝐴𝐴𝑥 𝐴𝐴 satisfying the inequalities
0 ≤ 𝐴𝐴 ≤ 𝑠𝑠 and 0 ≤ 𝐴𝐴 ≤ 𝑠𝑠.
Now if 𝐴𝐴𝑥 𝐴𝐴 𝑥 0 and 𝐴𝐴 𝑥 𝐴𝐴 𝐴 𝑥𝑥, the range of
possible values of 𝐴𝐴𝐴𝐴 is 0 ≤ 𝐴𝐴𝐴𝐴 ≤ �

�𝑥𝑥�; the least
possible value is taken when one of 𝐴𝐴𝑥 𝐴𝐴 is 0, and
the maximum possible value is taken when
𝐴𝐴 𝐴 𝐴𝐴 𝐴 �

�𝑥𝑥 (because if the sum of two numbers is
held �ixed, their product is largest when the
numbers are equal). For a solution to exist, a
necessary condition is that �

�𝑠𝑠𝑠𝑠 lies within this
interval. So we must have �

�𝑠𝑠𝑠𝑠 ≤ �
�𝑥𝑥�, i.e.,

𝑥𝑥� 𝑥 2𝑠𝑠𝑠𝑠. If this inequality is strict, there is a
possibility of two solutions (𝐴𝐴𝑥 𝐴𝐴𝑥, while if equality
holds (𝑥𝑥� 𝐴 2𝑠𝑠𝑠𝑠), there is just one solution. Note
that we say ‘possibility’ —because we also need
the inequalities 0 ≤ 𝐴𝐴 ≤ 𝑠𝑠 and 0 ≤ 𝐴𝐴 ≤ 𝑠𝑠 to hold
(for 𝐴𝐴𝑥 𝐴𝐴 must lie on sides 𝐴𝐴𝐴𝐴𝑥 𝐴𝐴𝐴𝐴 respectively).
The actual values of 𝐴𝐴𝑥 𝐴𝐴 (got by solving the
equations 𝐴𝐴 𝑥 𝐴𝐴 𝐴 𝑥𝑥, 𝐴𝐴𝐴𝐴 𝐴 �

�𝑠𝑠𝑠𝑠) are:

𝐴𝐴𝑥 𝐴𝐴 𝐴 𝑥𝑥 𝑠 𝑠𝑥𝑥� − 2𝑠𝑠𝑠𝑠
2 .

Case study–I: Triangle with sides 3, 4, 5We take
each pair of sides in turn to be candidates for
{𝑠𝑠𝑥 𝑠𝑠𝑏, and check for feasible solutions. Here 𝑥𝑥 𝐴 𝑠,
so 𝑥𝑥� 𝐴 3𝑠.

• {𝑠𝑠𝑥 𝑠𝑠𝑏 𝐴 {3𝑥 𝑏𝑏. Here 2𝑠𝑠𝑠𝑠 𝐴 2𝑏, so 𝑥𝑥� > 2𝑠𝑠𝑠𝑠.
Solving for 𝐴𝐴𝑥 𝐴𝐴, we get:

𝐴𝐴𝑥 𝐴𝐴 𝐴 𝑠 𝑠 𝑠3𝑠 − 2𝑏
2 𝐴 3 𝑠 𝑠3

Neither choice of sign works, because
3 𝑥 𝑠3 > 𝑏. So we do not get any equalizer
associated with this pair of sides.

• {𝑠𝑠𝑥 𝑠𝑠𝑏 𝐴 {3𝑥 𝑏𝑏. Here 2𝑠𝑠𝑠𝑠 𝐴 30, so 𝑥𝑥� > 2𝑠𝑠𝑠𝑠.
Solving for 𝐴𝐴𝑥 𝐴𝐴, we get:

𝐴𝐴𝑥 𝐴𝐴 𝐴 𝑠 𝑠 𝑠3𝑠 − 30
2 𝐴 3 𝑠 𝑠1.𝑏

Since 3 − 𝑠1.𝑏 < 3 and 3 < 3 𝑥 𝑠1.𝑏 < 𝑏,
we get one equalizer here (but only one).

• {𝑠𝑠𝑥 𝑠𝑠𝑏 𝐴 {𝑏𝑥 𝑏𝑏. Here 2𝑠𝑠𝑠𝑠 𝐴 𝑏0, so 𝑥𝑥� < 2𝑠𝑠𝑠𝑠.
This does not yield any equalizers.

So for the 3𝑥 𝑏𝑥 𝑏 triangle, there exists just one
equalizer. Figure 3 gives a sketch of the situation.
The sole equalizer 𝐴𝐴𝐴𝐴 has been drawn, with
𝐴𝐴𝐴𝐴 𝐴 3 − 𝑠1.𝑏 and 𝐴𝐴𝐴𝐴 𝐴 3 𝑥 𝑠1.𝑏. The equalizer
passes through the incentre 𝐼𝐼, as it should.
Observe that 𝐴𝐴𝐴𝐴 𝑥 𝐴𝐴𝐴𝐴 𝐴 𝑠 𝐴 𝑥𝑥 , and
𝐴𝐴𝐴𝐴 𝐶 𝐴𝐴𝐴𝐴 𝐴 𝐶 − 1.𝑏 𝐴 𝐶.𝑏 𝐴 �

�(3 𝐶 𝑏𝑥.
Case study–II: Triangle with sides 7, 8, 9
As earlier, we take each pair of sides in turn to be
candidates for {𝑠𝑠𝑥 𝑠𝑠𝑏, and check for feasible
solutions. Here 𝑥𝑥 𝐴 12, so 𝑥𝑥� 𝐴 1𝑏𝑏.

• {𝑠𝑠𝑥 𝑠𝑠𝑏 𝐴 {𝐶𝑥 𝑏𝑏. Here 2𝑠𝑠𝑠𝑠 𝐴 112, so 𝑥𝑥� > 2𝑠𝑠𝑠𝑠.
Solving for 𝐴𝐴𝑥 𝐴𝐴, we get:

𝐴𝐴𝑥 𝐴𝐴 𝐴 12 𝑠 𝑠1𝑏𝑏 − 112
2 𝐴 𝑠 𝑠 2𝑠2.

Neither choice of sign works, because
𝑠 𝑥 2𝑠2 > 𝑏. So we do not get any equalizer
associated with this pair of sides.

• {𝑠𝑠𝑥 𝑠𝑠𝑏 𝐴 {𝐶𝑥 𝐶𝑏. Here 2𝑠𝑠𝑠𝑠 𝐴 12𝑠, so 𝑥𝑥� > 2𝑠𝑠𝑠𝑠.
Solving for 𝐴𝐴𝑥 𝐴𝐴, we get:

𝐴𝐴𝑥 𝐴𝐴 𝐴 12 𝑠 𝑠1𝑏𝑏 − 12𝑠
2 𝐴 𝑠 𝑠 𝑠𝑏.𝑏.

Since 𝐶 < 𝑠 𝑥 𝑠𝑏.𝑏 < 𝐶, we get one
equalizer (but only one).

• {𝑠𝑠𝑥 𝑠𝑠𝑏 𝐴 {𝑏𝑥 𝐶𝑏. Here 2𝑠𝑠𝑠𝑠 𝐴 1𝑏𝑏, so 𝑥𝑥� 𝐴 2𝑠𝑠𝑠𝑠.
Solving for 𝐴𝐴𝑥 𝐴𝐴, we get:

𝐴𝐴𝑥 𝐴𝐴 𝐴 12 𝑠 𝑠1𝑏𝑏 − 1𝑏𝑏
2 𝐴 𝑠.

Since 𝑠 < 𝐶, we get an equalizer here. Since
𝐴𝐴 𝐴 𝐴𝐴 in this case, the two equalizers are
coincident.

4

and let 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴, 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴. As ℓ is an equalizer, we
have 𝐴𝐴 𝑥 𝐴𝐴 𝐴 𝑥𝑥 (where 2𝑥𝑥 𝐴 𝑠𝑠 𝑥 𝑠𝑠 𝑥 𝑠𝑠 is the
perimeter of the triangle) and 𝐴𝐴𝐴𝐴 𝐴 �

�𝑠𝑠𝑠𝑠. Hence an
equalizer passing through sides 𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴 exists
if and only if the equations 𝐴𝐴𝐴𝐴 𝐴 �

�𝑠𝑠𝑠𝑠, 𝐴𝐴 𝑥 𝐴𝐴 𝐴 𝑥𝑥
yield values for 𝐴𝐴𝑥 𝐴𝐴 satisfying the inequalities
0 ≤ 𝐴𝐴 ≤ 𝑠𝑠 and 0 ≤ 𝐴𝐴 ≤ 𝑠𝑠.
Now if 𝐴𝐴𝑥 𝐴𝐴 𝑥 0 and 𝐴𝐴 𝑥 𝐴𝐴 𝐴 𝑥𝑥, the range of
possible values of 𝐴𝐴𝐴𝐴 is 0 ≤ 𝐴𝐴𝐴𝐴 ≤ �

�𝑥𝑥�; the least
possible value is taken when one of 𝐴𝐴𝑥 𝐴𝐴 is 0, and
the maximum possible value is taken when
𝐴𝐴 𝐴 𝐴𝐴 𝐴 �

�𝑥𝑥 (because if the sum of two numbers is
held �ixed, their product is largest when the
numbers are equal). For a solution to exist, a
necessary condition is that �

�𝑠𝑠𝑠𝑠 lies within this
interval. So we must have �

�𝑠𝑠𝑠𝑠 ≤ �
�𝑥𝑥�, i.e.,

𝑥𝑥� 𝑥 2𝑠𝑠𝑠𝑠. If this inequality is strict, there is a
possibility of two solutions (𝐴𝐴𝑥 𝐴𝐴𝑥, while if equality
holds (𝑥𝑥� 𝐴 2𝑠𝑠𝑠𝑠), there is just one solution. Note
that we say ‘possibility’ —because we also need
the inequalities 0 ≤ 𝐴𝐴 ≤ 𝑠𝑠 and 0 ≤ 𝐴𝐴 ≤ 𝑠𝑠 to hold
(for 𝐴𝐴𝑥 𝐴𝐴 must lie on sides 𝐴𝐴𝐴𝐴𝑥 𝐴𝐴𝐴𝐴 respectively).
The actual values of 𝐴𝐴𝑥 𝐴𝐴 (got by solving the
equations 𝐴𝐴 𝑥 𝐴𝐴 𝐴 𝑥𝑥, 𝐴𝐴𝐴𝐴 𝐴 �

�𝑠𝑠𝑠𝑠) are:

𝐴𝐴𝑥 𝐴𝐴 𝐴 𝑥𝑥 𝑠 𝑠𝑥𝑥� − 2𝑠𝑠𝑠𝑠
2 .

Case study–I: Triangle with sides 3, 4, 5We take
each pair of sides in turn to be candidates for
{𝑠𝑠𝑥 𝑠𝑠𝑏, and check for feasible solutions. Here 𝑥𝑥 𝐴 𝑠,
so 𝑥𝑥� 𝐴 3𝑠.

• {𝑠𝑠𝑥 𝑠𝑠𝑏 𝐴 {3𝑥 𝑏𝑏. Here 2𝑠𝑠𝑠𝑠 𝐴 2𝑏, so 𝑥𝑥� > 2𝑠𝑠𝑠𝑠.
Solving for 𝐴𝐴𝑥 𝐴𝐴, we get:

𝐴𝐴𝑥 𝐴𝐴 𝐴 𝑠 𝑠 𝑠3𝑠 − 2𝑏
2 𝐴 3 𝑠 𝑠3

Neither choice of sign works, because
3 𝑥 𝑠3 > 𝑏. So we do not get any equalizer
associated with this pair of sides.

• {𝑠𝑠𝑥 𝑠𝑠𝑏 𝐴 {3𝑥 𝑏𝑏. Here 2𝑠𝑠𝑠𝑠 𝐴 30, so 𝑥𝑥� > 2𝑠𝑠𝑠𝑠.
Solving for 𝐴𝐴𝑥 𝐴𝐴, we get:

𝐴𝐴𝑥 𝐴𝐴 𝐴 𝑠 𝑠 𝑠3𝑠 − 30
2 𝐴 3 𝑠 𝑠1.𝑏

Since 3 − 𝑠1.𝑏 < 3 and 3 < 3 𝑥 𝑠1.𝑏 < 𝑏,
we get one equalizer here (but only one).

• {𝑠𝑠𝑥 𝑠𝑠𝑏 𝐴 {𝑏𝑥 𝑏𝑏. Here 2𝑠𝑠𝑠𝑠 𝐴 𝑏0, so 𝑥𝑥� < 2𝑠𝑠𝑠𝑠.
This does not yield any equalizers.

So for the 3𝑥 𝑏𝑥 𝑏 triangle, there exists just one
equalizer. Figure 3 gives a sketch of the situation.
The sole equalizer 𝐴𝐴𝐴𝐴 has been drawn, with
𝐴𝐴𝐴𝐴 𝐴 3 − 𝑠1.𝑏 and 𝐴𝐴𝐴𝐴 𝐴 3 𝑥 𝑠1.𝑏. The equalizer
passes through the incentre 𝐼𝐼, as it should.
Observe that 𝐴𝐴𝐴𝐴 𝑥 𝐴𝐴𝐴𝐴 𝐴 𝑠 𝐴 𝑥𝑥 , and
𝐴𝐴𝐴𝐴 𝐶 𝐴𝐴𝐴𝐴 𝐴 𝐶 − 1.𝑏 𝐴 𝐶.𝑏 𝐴 �

�(3 𝐶 𝑏𝑥.
Case study–II: Triangle with sides 7, 8, 9
As earlier, we take each pair of sides in turn to be
candidates for {𝑠𝑠𝑥 𝑠𝑠𝑏, and check for feasible
solutions. Here 𝑥𝑥 𝐴 12, so 𝑥𝑥� 𝐴 1𝑏𝑏.

• {𝑠𝑠𝑥 𝑠𝑠𝑏 𝐴 {𝐶𝑥 𝑏𝑏. Here 2𝑠𝑠𝑠𝑠 𝐴 112, so 𝑥𝑥� > 2𝑠𝑠𝑠𝑠.
Solving for 𝐴𝐴𝑥 𝐴𝐴, we get:

𝐴𝐴𝑥 𝐴𝐴 𝐴 12 𝑠 𝑠1𝑏𝑏 − 112
2 𝐴 𝑠 𝑠 2𝑠2.

Neither choice of sign works, because
𝑠 𝑥 2𝑠2 > 𝑏. So we do not get any equalizer
associated with this pair of sides.

• {𝑠𝑠𝑥 𝑠𝑠𝑏 𝐴 {𝐶𝑥 𝐶𝑏. Here 2𝑠𝑠𝑠𝑠 𝐴 12𝑠, so 𝑥𝑥� > 2𝑠𝑠𝑠𝑠.
Solving for 𝐴𝐴𝑥 𝐴𝐴, we get:

𝐴𝐴𝑥 𝐴𝐴 𝐴 12 𝑠 𝑠1𝑏𝑏 − 12𝑠
2 𝐴 𝑠 𝑠 𝑠𝑏.𝑏.

Since 𝐶 < 𝑠 𝑥 𝑠𝑏.𝑏 < 𝐶, we get one
equalizer (but only one).

• {𝑠𝑠𝑥 𝑠𝑠𝑏 𝐴 {𝑏𝑥 𝐶𝑏. Here 2𝑠𝑠𝑠𝑠 𝐴 1𝑏𝑏, so 𝑥𝑥� 𝐴 2𝑠𝑠𝑠𝑠.
Solving for 𝐴𝐴𝑥 𝐴𝐴, we get:

𝐴𝐴𝑥 𝐴𝐴 𝐴 12 𝑠 𝑠1𝑏𝑏 − 1𝑏𝑏
2 𝐴 𝑠.

Since 𝑠 < 𝐶, we get an equalizer here. Since
𝐴𝐴 𝐴 𝐴𝐴 in this case, the two equalizers are
coincident.

4

and let 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴, 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴. As ℓ is an equalizer, we
have 𝐴𝐴 𝑥 𝐴𝐴 𝐴 𝑥𝑥 (where 2𝑥𝑥 𝐴 𝑠𝑠 𝑥 𝑠𝑠 𝑥 𝑠𝑠 is the
perimeter of the triangle) and 𝐴𝐴𝐴𝐴 𝐴 �

�𝑠𝑠𝑠𝑠. Hence an
equalizer passing through sides 𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴 exists
if and only if the equations 𝐴𝐴𝐴𝐴 𝐴 �

�𝑠𝑠𝑠𝑠, 𝐴𝐴 𝑥 𝐴𝐴 𝐴 𝑥𝑥
yield values for 𝐴𝐴𝑥 𝐴𝐴 satisfying the inequalities
0 ≤ 𝐴𝐴 ≤ 𝑠𝑠 and 0 ≤ 𝐴𝐴 ≤ 𝑠𝑠.
Now if 𝐴𝐴𝑥 𝐴𝐴 𝑥 0 and 𝐴𝐴 𝑥 𝐴𝐴 𝐴 𝑥𝑥, the range of
possible values of 𝐴𝐴𝐴𝐴 is 0 ≤ 𝐴𝐴𝐴𝐴 ≤ �

�𝑥𝑥�; the least
possible value is taken when one of 𝐴𝐴𝑥 𝐴𝐴 is 0, and
the maximum possible value is taken when
𝐴𝐴 𝐴 𝐴𝐴 𝐴 �

�𝑥𝑥 (because if the sum of two numbers is
held �ixed, their product is largest when the
numbers are equal). For a solution to exist, a
necessary condition is that �

�𝑠𝑠𝑠𝑠 lies within this
interval. So we must have �

�𝑠𝑠𝑠𝑠 ≤ �
�𝑥𝑥�, i.e.,

𝑥𝑥� 𝑥 2𝑠𝑠𝑠𝑠. If this inequality is strict, there is a
possibility of two solutions (𝐴𝐴𝑥 𝐴𝐴𝑥, while if equality
holds (𝑥𝑥� 𝐴 2𝑠𝑠𝑠𝑠), there is just one solution. Note
that we say ‘possibility’ —because we also need
the inequalities 0 ≤ 𝐴𝐴 ≤ 𝑠𝑠 and 0 ≤ 𝐴𝐴 ≤ 𝑠𝑠 to hold
(for 𝐴𝐴𝑥 𝐴𝐴 must lie on sides 𝐴𝐴𝐴𝐴𝑥 𝐴𝐴𝐴𝐴 respectively).
The actual values of 𝐴𝐴𝑥 𝐴𝐴 (got by solving the
equations 𝐴𝐴 𝑥 𝐴𝐴 𝐴 𝑥𝑥, 𝐴𝐴𝐴𝐴 𝐴 �

�𝑠𝑠𝑠𝑠) are:

𝐴𝐴𝑥 𝐴𝐴 𝐴 𝑥𝑥 𝑠 𝑠𝑥𝑥� − 2𝑠𝑠𝑠𝑠
2 .

Case study–I: Triangle with sides 3, 4, 5We take
each pair of sides in turn to be candidates for
{𝑠𝑠𝑥 𝑠𝑠𝑏, and check for feasible solutions. Here 𝑥𝑥 𝐴 𝑠,
so 𝑥𝑥� 𝐴 3𝑠.

• {𝑠𝑠𝑥 𝑠𝑠𝑏 𝐴 {3𝑥 𝑏𝑏. Here 2𝑠𝑠𝑠𝑠 𝐴 2𝑏, so 𝑥𝑥� > 2𝑠𝑠𝑠𝑠.
Solving for 𝐴𝐴𝑥 𝐴𝐴, we get:

𝐴𝐴𝑥 𝐴𝐴 𝐴 𝑠 𝑠 𝑠3𝑠 − 2𝑏
2 𝐴 3 𝑠 𝑠3

Neither choice of sign works, because
3 𝑥 𝑠3 > 𝑏. So we do not get any equalizer
associated with this pair of sides.

• {𝑠𝑠𝑥 𝑠𝑠𝑏 𝐴 {3𝑥 𝑏𝑏. Here 2𝑠𝑠𝑠𝑠 𝐴 30, so 𝑥𝑥� > 2𝑠𝑠𝑠𝑠.
Solving for 𝐴𝐴𝑥 𝐴𝐴, we get:

𝐴𝐴𝑥 𝐴𝐴 𝐴 𝑠 𝑠 𝑠3𝑠 − 30
2 𝐴 3 𝑠 𝑠1.𝑏

Since 3 − 𝑠1.𝑏 < 3 and 3 < 3 𝑥 𝑠1.𝑏 < 𝑏,
we get one equalizer here (but only one).

• {𝑠𝑠𝑥 𝑠𝑠𝑏 𝐴 {𝑏𝑥 𝑏𝑏. Here 2𝑠𝑠𝑠𝑠 𝐴 𝑏0, so 𝑥𝑥� < 2𝑠𝑠𝑠𝑠.
This does not yield any equalizers.

So for the 3𝑥 𝑏𝑥 𝑏 triangle, there exists just one
equalizer. Figure 3 gives a sketch of the situation.
The sole equalizer 𝐴𝐴𝐴𝐴 has been drawn, with
𝐴𝐴𝐴𝐴 𝐴 3 − 𝑠1.𝑏 and 𝐴𝐴𝐴𝐴 𝐴 3 𝑥 𝑠1.𝑏. The equalizer
passes through the incentre 𝐼𝐼, as it should.
Observe that 𝐴𝐴𝐴𝐴 𝑥 𝐴𝐴𝐴𝐴 𝐴 𝑠 𝐴 𝑥𝑥 , and
𝐴𝐴𝐴𝐴 𝐶 𝐴𝐴𝐴𝐴 𝐴 𝐶 − 1.𝑏 𝐴 𝐶.𝑏 𝐴 �

�(3 𝐶 𝑏𝑥.
Case study–II: Triangle with sides 7, 8, 9
As earlier, we take each pair of sides in turn to be
candidates for {𝑠𝑠𝑥 𝑠𝑠𝑏, and check for feasible
solutions. Here 𝑥𝑥 𝐴 12, so 𝑥𝑥� 𝐴 1𝑏𝑏.

• {𝑠𝑠𝑥 𝑠𝑠𝑏 𝐴 {𝐶𝑥 𝑏𝑏. Here 2𝑠𝑠𝑠𝑠 𝐴 112, so 𝑥𝑥� > 2𝑠𝑠𝑠𝑠.
Solving for 𝐴𝐴𝑥 𝐴𝐴, we get:

𝐴𝐴𝑥 𝐴𝐴 𝐴 12 𝑠 𝑠1𝑏𝑏 − 112
2 𝐴 𝑠 𝑠 2𝑠2.

Neither choice of sign works, because
𝑠 𝑥 2𝑠2 > 𝑏. So we do not get any equalizer
associated with this pair of sides.

• {𝑠𝑠𝑥 𝑠𝑠𝑏 𝐴 {𝐶𝑥 𝐶𝑏. Here 2𝑠𝑠𝑠𝑠 𝐴 12𝑠, so 𝑥𝑥� > 2𝑠𝑠𝑠𝑠.
Solving for 𝐴𝐴𝑥 𝐴𝐴, we get:

𝐴𝐴𝑥 𝐴𝐴 𝐴 12 𝑠 𝑠1𝑏𝑏 − 12𝑠
2 𝐴 𝑠 𝑠 𝑠𝑏.𝑏.

Since 𝐶 < 𝑠 𝑥 𝑠𝑏.𝑏 < 𝐶, we get one
equalizer (but only one).

• {𝑠𝑠𝑥 𝑠𝑠𝑏 𝐴 {𝑏𝑥 𝐶𝑏. Here 2𝑠𝑠𝑠𝑠 𝐴 1𝑏𝑏, so 𝑥𝑥� 𝐴 2𝑠𝑠𝑠𝑠.
Solving for 𝐴𝐴𝑥 𝐴𝐴, we get:

𝐴𝐴𝑥 𝐴𝐴 𝐴 12 𝑠 𝑠1𝑏𝑏 − 1𝑏𝑏
2 𝐴 𝑠.

Since 𝑠 < 𝐶, we get an equalizer here. Since
𝐴𝐴 𝐴 𝐴𝐴 in this case, the two equalizers are
coincident.

4

and let 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴, 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴. As ℓ is an equalizer, we
have 𝐴𝐴 𝑥 𝐴𝐴 𝐴 𝑥𝑥 (where 2𝑥𝑥 𝐴 𝑠𝑠 𝑥 𝑠𝑠 𝑥 𝑠𝑠 is the
perimeter of the triangle) and 𝐴𝐴𝐴𝐴 𝐴 �

�𝑠𝑠𝑠𝑠. Hence an
equalizer passing through sides 𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴 exists
if and only if the equations 𝐴𝐴𝐴𝐴 𝐴 �

�𝑠𝑠𝑠𝑠, 𝐴𝐴 𝑥 𝐴𝐴 𝐴 𝑥𝑥
yield values for 𝐴𝐴𝑥 𝐴𝐴 satisfying the inequalities
0 ≤ 𝐴𝐴 ≤ 𝑠𝑠 and 0 ≤ 𝐴𝐴 ≤ 𝑠𝑠.
Now if 𝐴𝐴𝑥 𝐴𝐴 𝑥 0 and 𝐴𝐴 𝑥 𝐴𝐴 𝐴 𝑥𝑥, the range of
possible values of 𝐴𝐴𝐴𝐴 is 0 ≤ 𝐴𝐴𝐴𝐴 ≤ �

�𝑥𝑥�; the least
possible value is taken when one of 𝐴𝐴𝑥 𝐴𝐴 is 0, and
the maximum possible value is taken when
𝐴𝐴 𝐴 𝐴𝐴 𝐴 �

�𝑥𝑥 (because if the sum of two numbers is
held �ixed, their product is largest when the
numbers are equal). For a solution to exist, a
necessary condition is that �

�𝑠𝑠𝑠𝑠 lies within this
interval. So we must have �

�𝑠𝑠𝑠𝑠 ≤ �
�𝑥𝑥�, i.e.,

𝑥𝑥� 𝑥 2𝑠𝑠𝑠𝑠. If this inequality is strict, there is a
possibility of two solutions (𝐴𝐴𝑥 𝐴𝐴𝑥, while if equality
holds (𝑥𝑥� 𝐴 2𝑠𝑠𝑠𝑠), there is just one solution. Note
that we say ‘possibility’ —because we also need
the inequalities 0 ≤ 𝐴𝐴 ≤ 𝑠𝑠 and 0 ≤ 𝐴𝐴 ≤ 𝑠𝑠 to hold
(for 𝐴𝐴𝑥 𝐴𝐴 must lie on sides 𝐴𝐴𝐴𝐴𝑥 𝐴𝐴𝐴𝐴 respectively).
The actual values of 𝐴𝐴𝑥 𝐴𝐴 (got by solving the
equations 𝐴𝐴 𝑥 𝐴𝐴 𝐴 𝑥𝑥, 𝐴𝐴𝐴𝐴 𝐴 �

�𝑠𝑠𝑠𝑠) are:

𝐴𝐴𝑥 𝐴𝐴 𝐴 𝑥𝑥 𝑠 𝑠𝑥𝑥� − 2𝑠𝑠𝑠𝑠
2 .

Case study–I: Triangle with sides 3, 4, 5We take
each pair of sides in turn to be candidates for
{𝑠𝑠𝑥 𝑠𝑠𝑏, and check for feasible solutions. Here 𝑥𝑥 𝐴 𝑠,
so 𝑥𝑥� 𝐴 3𝑠.

• {𝑠𝑠𝑥 𝑠𝑠𝑏 𝐴 {3𝑥 𝑏𝑏. Here 2𝑠𝑠𝑠𝑠 𝐴 2𝑏, so 𝑥𝑥� > 2𝑠𝑠𝑠𝑠.
Solving for 𝐴𝐴𝑥 𝐴𝐴, we get:

𝐴𝐴𝑥 𝐴𝐴 𝐴 𝑠 𝑠 𝑠3𝑠 − 2𝑏
2 𝐴 3 𝑠 𝑠3

Neither choice of sign works, because
3 𝑥 𝑠3 > 𝑏. So we do not get any equalizer
associated with this pair of sides.

• {𝑠𝑠𝑥 𝑠𝑠𝑏 𝐴 {3𝑥 𝑏𝑏. Here 2𝑠𝑠𝑠𝑠 𝐴 30, so 𝑥𝑥� > 2𝑠𝑠𝑠𝑠.
Solving for 𝐴𝐴𝑥 𝐴𝐴, we get:

𝐴𝐴𝑥 𝐴𝐴 𝐴 𝑠 𝑠 𝑠3𝑠 − 30
2 𝐴 3 𝑠 𝑠1.𝑏

Since 3 − 𝑠1.𝑏 < 3 and 3 < 3 𝑥 𝑠1.𝑏 < 𝑏,
we get one equalizer here (but only one).

• {𝑠𝑠𝑥 𝑠𝑠𝑏 𝐴 {𝑏𝑥 𝑏𝑏. Here 2𝑠𝑠𝑠𝑠 𝐴 𝑏0, so 𝑥𝑥� < 2𝑠𝑠𝑠𝑠.
This does not yield any equalizers.

So for the 3𝑥 𝑏𝑥 𝑏 triangle, there exists just one
equalizer. Figure 3 gives a sketch of the situation.
The sole equalizer 𝐴𝐴𝐴𝐴 has been drawn, with
𝐴𝐴𝐴𝐴 𝐴 3 − 𝑠1.𝑏 and 𝐴𝐴𝐴𝐴 𝐴 3 𝑥 𝑠1.𝑏. The equalizer
passes through the incentre 𝐼𝐼, as it should.
Observe that 𝐴𝐴𝐴𝐴 𝑥 𝐴𝐴𝐴𝐴 𝐴 𝑠 𝐴 𝑥𝑥 , and
𝐴𝐴𝐴𝐴 𝐶 𝐴𝐴𝐴𝐴 𝐴 𝐶 − 1.𝑏 𝐴 𝐶.𝑏 𝐴 �

�(3 𝐶 𝑏𝑥.
Case study–II: Triangle with sides 7, 8, 9
As earlier, we take each pair of sides in turn to be
candidates for {𝑠𝑠𝑥 𝑠𝑠𝑏, and check for feasible
solutions. Here 𝑥𝑥 𝐴 12, so 𝑥𝑥� 𝐴 1𝑏𝑏.

• {𝑠𝑠𝑥 𝑠𝑠𝑏 𝐴 {𝐶𝑥 𝑏𝑏. Here 2𝑠𝑠𝑠𝑠 𝐴 112, so 𝑥𝑥� > 2𝑠𝑠𝑠𝑠.
Solving for 𝐴𝐴𝑥 𝐴𝐴, we get:

𝐴𝐴𝑥 𝐴𝐴 𝐴 12 𝑠 𝑠1𝑏𝑏 − 112
2 𝐴 𝑠 𝑠 2𝑠2.

Neither choice of sign works, because
𝑠 𝑥 2𝑠2 > 𝑏. So we do not get any equalizer
associated with this pair of sides.

• {𝑠𝑠𝑥 𝑠𝑠𝑏 𝐴 {𝐶𝑥 𝐶𝑏. Here 2𝑠𝑠𝑠𝑠 𝐴 12𝑠, so 𝑥𝑥� > 2𝑠𝑠𝑠𝑠.
Solving for 𝐴𝐴𝑥 𝐴𝐴, we get:

𝐴𝐴𝑥 𝐴𝐴 𝐴 12 𝑠 𝑠1𝑏𝑏 − 12𝑠
2 𝐴 𝑠 𝑠 𝑠𝑏.𝑏.

Since 𝐶 < 𝑠 𝑥 𝑠𝑏.𝑏 < 𝐶, we get one
equalizer (but only one).

• {𝑠𝑠𝑥 𝑠𝑠𝑏 𝐴 {𝑏𝑥 𝐶𝑏. Here 2𝑠𝑠𝑠𝑠 𝐴 1𝑏𝑏, so 𝑥𝑥� 𝐴 2𝑠𝑠𝑠𝑠.
Solving for 𝐴𝐴𝑥 𝐴𝐴, we get:

𝐴𝐴𝑥 𝐴𝐴 𝐴 12 𝑠 𝑠1𝑏𝑏 − 1𝑏𝑏
2 𝐴 𝑠.

Since 𝑠 < 𝐶, we get an equalizer here. Since
𝐴𝐴 𝐴 𝐴𝐴 in this case, the two equalizers are
coincident.
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FIGURE 2.

and let AP = x, AQ = y. As ℓ is an equalizer, we have x+ y = s (where 2s = a+b+ c is the
perimeter of the triangle) and xy = 1

2bc. Hence an equalizer passing through sides AB and
AC exists if and only if the equations xy = 1

2bc, x+y = s yield values for x,y satisfying the
inequalities 0 ≤ x ≤ c and 0 ≤ y ≤ b.

Now if x,y ≥ 0 and x+y = s, the range of possible values of xy is 0 ≤ xy ≤ 1
4s2; the least

possible value is taken when one of x,y is 0, and the maximum possible value is taken
when x = y = 1

2s (because if the sum of two numbers is held fixed, their product is largest
when the numbers are equal). For a solution to exist, a necessary condition is that 1

2bc
lies within this interval. So we must have 1

2bc ≤ 1
4s2, i.e., s2 ≥ 2bc. If this inequality is

strict, there is a possibility of two solutions (x,y), while if equality holds (s2 = 2bc), there
is just one solution. Note that we say ‘possibility’ — because we also need the inequalities
0 ≤ x ≤ c and 0 ≤ y ≤ b to hold (for P,Q must lie on sides AB,AC respectively). The actual
values of x,y (got by solving the equations x+y = s, xy = 1

2bc) are:

x,y = s±
√

s2−2bc
2

.
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and let 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴, 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴. As ℓ is an equalizer, we
have 𝐴𝐴 𝑥 𝐴𝐴 𝐴 𝑥𝑥 (where 2𝑥𝑥 𝐴 𝑠𝑠 𝑥 𝑠𝑠 𝑥 𝑠𝑠 is the
perimeter of the triangle) and 𝐴𝐴𝐴𝐴 𝐴 �

�𝑠𝑠𝑠𝑠. Hence an
equalizer passing through sides 𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴 exists
if and only if the equations 𝐴𝐴𝐴𝐴 𝐴 �

�𝑠𝑠𝑠𝑠, 𝐴𝐴 𝑥 𝐴𝐴 𝐴 𝑥𝑥
yield values for 𝐴𝐴𝑥 𝐴𝐴 satisfying the inequalities
0 ≤ 𝐴𝐴 ≤ 𝑠𝑠 and 0 ≤ 𝐴𝐴 ≤ 𝑠𝑠.
Now if 𝐴𝐴𝑥 𝐴𝐴 𝑥 0 and 𝐴𝐴 𝑥 𝐴𝐴 𝐴 𝑥𝑥, the range of
possible values of 𝐴𝐴𝐴𝐴 is 0 ≤ 𝐴𝐴𝐴𝐴 ≤ �

�𝑥𝑥�; the least
possible value is taken when one of 𝐴𝐴𝑥 𝐴𝐴 is 0, and
the maximum possible value is taken when
𝐴𝐴 𝐴 𝐴𝐴 𝐴 �

�𝑥𝑥 (because if the sum of two numbers is
held �ixed, their product is largest when the
numbers are equal). For a solution to exist, a
necessary condition is that �

�𝑠𝑠𝑠𝑠 lies within this
interval. So we must have �

�𝑠𝑠𝑠𝑠 ≤ �
�𝑥𝑥�, i.e.,

𝑥𝑥� 𝑥 2𝑠𝑠𝑠𝑠. If this inequality is strict, there is a
possibility of two solutions (𝐴𝐴𝑥 𝐴𝐴𝑥, while if equality
holds (𝑥𝑥� 𝐴 2𝑠𝑠𝑠𝑠), there is just one solution. Note
that we say ‘possibility’ —because we also need
the inequalities 0 ≤ 𝐴𝐴 ≤ 𝑠𝑠 and 0 ≤ 𝐴𝐴 ≤ 𝑠𝑠 to hold
(for 𝐴𝐴𝑥 𝐴𝐴 must lie on sides 𝐴𝐴𝐴𝐴𝑥 𝐴𝐴𝐴𝐴 respectively).
The actual values of 𝐴𝐴𝑥 𝐴𝐴 (got by solving the
equations 𝐴𝐴 𝑥 𝐴𝐴 𝐴 𝑥𝑥, 𝐴𝐴𝐴𝐴 𝐴 �

�𝑠𝑠𝑠𝑠) are:

𝐴𝐴𝑥 𝐴𝐴 𝐴 𝑥𝑥 𝑠 𝑠𝑥𝑥� − 2𝑠𝑠𝑠𝑠
2 .

Case study–I: Triangle with sides 3, 4, 5We take
each pair of sides in turn to be candidates for
{𝑠𝑠𝑥 𝑠𝑠𝑏, and check for feasible solutions. Here 𝑥𝑥 𝐴 𝑠,
so 𝑥𝑥� 𝐴 3𝑠.

• {𝑠𝑠𝑥 𝑠𝑠𝑏 𝐴 {3𝑥 𝑏𝑏. Here 2𝑠𝑠𝑠𝑠 𝐴 2𝑏, so 𝑥𝑥� > 2𝑠𝑠𝑠𝑠.
Solving for 𝐴𝐴𝑥 𝐴𝐴, we get:

𝐴𝐴𝑥 𝐴𝐴 𝐴 𝑠 𝑠 𝑠3𝑠 − 2𝑏
2 𝐴 3 𝑠 𝑠3

Neither choice of sign works, because
3 𝑥 𝑠3 > 𝑏. So we do not get any equalizer
associated with this pair of sides.

• {𝑠𝑠𝑥 𝑠𝑠𝑏 𝐴 {3𝑥 𝑏𝑏. Here 2𝑠𝑠𝑠𝑠 𝐴 30, so 𝑥𝑥� > 2𝑠𝑠𝑠𝑠.
Solving for 𝐴𝐴𝑥 𝐴𝐴, we get:

𝐴𝐴𝑥 𝐴𝐴 𝐴 𝑠 𝑠 𝑠3𝑠 − 30
2 𝐴 3 𝑠 𝑠1.𝑏

Since 3 − 𝑠1.𝑏 < 3 and 3 < 3 𝑥 𝑠1.𝑏 < 𝑏,
we get one equalizer here (but only one).

• {𝑠𝑠𝑥 𝑠𝑠𝑏 𝐴 {𝑏𝑥 𝑏𝑏. Here 2𝑠𝑠𝑠𝑠 𝐴 𝑏0, so 𝑥𝑥� < 2𝑠𝑠𝑠𝑠.
This does not yield any equalizers.

So for the 3𝑥 𝑏𝑥 𝑏 triangle, there exists just one
equalizer. Figure 3 gives a sketch of the situation.
The sole equalizer 𝐴𝐴𝐴𝐴 has been drawn, with
𝐴𝐴𝐴𝐴 𝐴 3 − 𝑠1.𝑏 and 𝐴𝐴𝐴𝐴 𝐴 3 𝑥 𝑠1.𝑏. The equalizer
passes through the incentre 𝐼𝐼, as it should.
Observe that 𝐴𝐴𝐴𝐴 𝑥 𝐴𝐴𝐴𝐴 𝐴 𝑠 𝐴 𝑥𝑥 , and
𝐴𝐴𝐴𝐴 𝐶 𝐴𝐴𝐴𝐴 𝐴 𝐶 − 1.𝑏 𝐴 𝐶.𝑏 𝐴 �

�(3 𝐶 𝑏𝑥.
Case study–II: Triangle with sides 7, 8, 9
As earlier, we take each pair of sides in turn to be
candidates for {𝑠𝑠𝑥 𝑠𝑠𝑏, and check for feasible
solutions. Here 𝑥𝑥 𝐴 12, so 𝑥𝑥� 𝐴 1𝑏𝑏.

• {𝑠𝑠𝑥 𝑠𝑠𝑏 𝐴 {𝐶𝑥 𝑏𝑏. Here 2𝑠𝑠𝑠𝑠 𝐴 112, so 𝑥𝑥� > 2𝑠𝑠𝑠𝑠.
Solving for 𝐴𝐴𝑥 𝐴𝐴, we get:

𝐴𝐴𝑥 𝐴𝐴 𝐴 12 𝑠 𝑠1𝑏𝑏 − 112
2 𝐴 𝑠 𝑠 2𝑠2.

Neither choice of sign works, because
𝑠 𝑥 2𝑠2 > 𝑏. So we do not get any equalizer
associated with this pair of sides.

• {𝑠𝑠𝑥 𝑠𝑠𝑏 𝐴 {𝐶𝑥 𝐶𝑏. Here 2𝑠𝑠𝑠𝑠 𝐴 12𝑠, so 𝑥𝑥� > 2𝑠𝑠𝑠𝑠.
Solving for 𝐴𝐴𝑥 𝐴𝐴, we get:

𝐴𝐴𝑥 𝐴𝐴 𝐴 12 𝑠 𝑠1𝑏𝑏 − 12𝑠
2 𝐴 𝑠 𝑠 𝑠𝑏.𝑏.

Since 𝐶 < 𝑠 𝑥 𝑠𝑏.𝑏 < 𝐶, we get one
equalizer (but only one).

• {𝑠𝑠𝑥 𝑠𝑠𝑏 𝐴 {𝑏𝑥 𝐶𝑏. Here 2𝑠𝑠𝑠𝑠 𝐴 1𝑏𝑏, so 𝑥𝑥� 𝐴 2𝑠𝑠𝑠𝑠.
Solving for 𝐴𝐴𝑥 𝐴𝐴, we get:

𝐴𝐴𝑥 𝐴𝐴 𝐴 12 𝑠 𝑠1𝑏𝑏 − 1𝑏𝑏
2 𝐴 𝑠.

Since 𝑠 < 𝐶, we get an equalizer here. Since
𝐴𝐴 𝐴 𝐴𝐴 in this case, the two equalizers are
coincident.

4
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Figure 3. Equalizer for a 3,4,5 triangle;  
I is the incentre (there is just one equalizer) 

Figure 4. Equalizers for a 7, 8, 9 triangle: P1Q1,  
with BP1 = 6 − √4.5 and  

BQ1 = 6 + √4.5; P2Q2, with CP2 = 6 = CQ2; I  
is the incentre
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So for the 7, 8, 9 triangle, there exist two equalizers. Both of them have been sketched in Figure 4 
(segments P1 Q2 and P2 Q2). 

An equilateral triangle obviously has three equalizers (all three medians). So we may anticipate that as 
the triangle changes in shape from a high degree of scalene-ness towards equilateral-ness, the number of 
equalizers changes from 1 to 3. A complete analysis of how this change happens is given in [4]. However, 
we do not try to prove this here.


