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In case you are wondering what is about to unfold, let me recap the 
theme of the conference: mathematics in/from anything and 
everything. What do we mean by anything and everything? Let 

me take this opportunity to focus on a mundane task that most people, 
women in particular, do almost every day - folding clothes. Let us see 
what mathematics is hiding within the folds and where folds can lead us, 
mathematically of course!  

Let me give you a few examples of how girls and women have an edge 
over the male of the species regarding mathematics! Let’s begin with a 
sari. 

Figure 1. 
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UN-FOLDING
“Mathematics in/from anything and everything” was 
the theme of the Association of Math Teachers of India 
(AMTI) conference at Kochi in January 2014. Swati Sircar, 
mathematics resource person at Azim Premji University 
delivered this talk in which she folded the cloth to match 
the math.
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The sari is a long piece of cloth which symbolizes 
female Indian attire. When you fold a sari, you 
need to be careful while holding the folds, else you 
will miss some edges! If you count the number of 
folded edges after each fold, you get the powers 
of 2, viz. 1, 2, 4, 8 (typically, no one folds a sari 
beyond that). Why? Well, folding is equivalent 
to folding in half, so after the first fold you get 1 
folded edge. This doubles at the second fold giving 
2 folds, which doubles at the third fold giving 4 
folds, and so on (see Figure 1). Table 1 displays 
the count of folded edges after each fold.

Table 1. 

You can generalize that n folds will generate 
edges 2n-1. This can be a good starter for teaching 
exponents. It is important to draw attention to 
what are we halving, and whether that is getting 
‘compensated’ elsewhere. Essentially with each 
fold we halve the length of the (folded) sari. The 
resulting length is compensated by the number 
of layers. This is important as we are not cutting 
and throwing away something but only folding, 
i.e., the whole is intact. So the resulting length and 
the number of layers always maintain a reciprocal 
relation.

Simple halving folds can be used to initiate the 
study of Geometric Progressions (GP) and the sum 
of a GP. Take 2 handkerchiefs of the same size but 
of different colour and place them one over the 
other. Fold the top one in half. Each ‘sheet’ now 
represents ½. Fold the top again in half. Now the 
top represents, 

while the bottom represents 

If you keep going, after the nth halving, the top 
represents 

and the bottom represents

One can see from this that 

This idea can be explored further to derive the 
formula for calculating sum of the first n terms of a 
GP. Note that you can also do the halving along the 
diagonals (Figure 2).  

Figure 2. 

The pedagogic possibilities in folding are not 
limited to concepts related to halving (and 
doubling). Here is another situation where girls 
and women score over boys (and men). If you 
wish to fold a bed sheet or a handkerchief, you 
can start with any edge. Here we are assuming 
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that we want a “nice” way of folding where the 
edges match up at each fold. Now, take a skirt or 
a petticoat. Can you start folding along any edge? 
No. You must start at the top edge. Otherwise the 
side edges will not match up. Why? The reason lies 
in the shape. 

A bed sheet or handkerchief is rectangular. Hence 
both pairs of opposite sides are parallel to each 
other. But a skirt or a petticoat is like an isosceles 
trapezium (at best), and their vertical sides are 
not parallel to each other. When we fold a cloth 
(or paper), a particular edge gets folded in a way 
that the 2 parts of the edge match, the fold line 
is perpendicular to that edge, because we are 
halving the straight angle, i.e.,180° and getting 2 
right angles (90°) on either side of the fold. The 
fold line therefore is the angle bisector of the 
straight angle represented by the edge (Figure 3).  

Since opposite sides of a rectangle are parallel, 
any line perpendicular to one edge will be 
perpendicular to the opposite edge as well. So we 
can start with any edge and fold, and the opposite 
side will naturally match up. But if we fold either 
of the vertical sides of a skirt or a petticoat, the 
fold line perpendicular to that edge will not be 
perpendicular to the opposite edge, as the vertical 
edges are not parallel (Figure 4).  

However such a situation does arise with men’s 
attire too: bell-bottom pants, after the first fold 

brings the two trouser legs together. The eternal 
popularity of the sari ensures that women will 
always encounter such folds whereas men 
will have to wait for the vagaries of fashion to 
experience this aspect of mathematics!  

This simple folding technique can be used to test if 
two lines are parallel or not. Fold along both lines. 
Now fold a perpendicular to one line. Check if the 
two parts of the other line have coincided with 
each other. If they have, then the fold line is also 
perpendicular to the second line and therefore the 
two lines are parallel to each other (as both are 
perpendicular to the fold line). If not, the two lines 
are not parallel to each other (Figure 5).  

If we study a folded petticoat or skirt, more 
geometry unfolds. The first vertical fold halves the 
cloth and the 2 parts exactly match. That makes 
the fold line special. It is the line of symmetry of 
the skirt or petticoat. Given the isosceles trapezoid 
shape, there is just one such line. Naturally, we 
started with that line. Whenever you fold and cut, 
and then unfold to see the resulting pattern, you 
cannot but see line symmetry. This can be used 
with multiple folds to generate the following: 

(a) Rotational symmetry (by using folds passing 
through the same point), or : 

(b) Translation symmetry (by using folds parallel 
to each other). 

Figure 3. 

Figure 5. Figure 4.
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Beautiful patterns can then be generated  
(Figure 6).  

This helps explain how double reflection on 
intersecting lines creates rotation, the intersection 
point being the center of rotation. The angle of 
rotation is double the acute angle generated by 
the intersecting lines (Figure 7).  

Similarly double reflection on parallel lines 
creates translation. The distance translated is 
double the distance between the parallel lines 
(Figure 8).  

So folds are closely linked to line symmetry 
and reflection and can be used to show 
many geometric properties of triangles and 
quadrilaterals, especially those involved with 
congruence.  

Just to give an example, suppose you want to 
compare the sides and angles in a triangle. There 
are 2 theorems related to these – side relations 
implying angles relations and their reverses – for 
scalene as well as for isosceles triangles. Let us 
take a closer look at them through the lens of 
paper folding:  

Figure 6. 

Figure 8. Figure 7. 
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Part A: angle relations implying side 
relations 

Paper Folding Theorem 

To compare any 2 sides of any triangle fold one on 
the other starting from the common vertex. The 
fold is actually the bisector of the angle between 
these 2 sides (Figure 9).  

As you can see from the right, the diagrams match 
what you get through folding. The construction in 
each case is exactly the corresponding fold line.  

Now let us look at two theorems:  

Theorem 1: In ΔABC, ∠C < ∠B ⇒ AB < AC  

Draw the angle bisector of ∠A that meets BC at D 
(Figure 10).  
∴ ∠DAB = ∠DAC = ½∠A 
∠ADC = ∠ABD + ∠BAD = ∠B + ½∠A >  
∠C + ½∠A = ∠ ACD + ∠DAC = ∠ADB  
∴ We can cut off an angle equal to ∠ADB from 
∠ADC. 
Let E be a point on AC such that ∠ADE = ∠ADB. 
Then ΔABD ≅ ΔAED, by ASA. 
∴ AB = AE < AC.  

Theorem 2: In ΔABC,  ∠B = ∠C ⇒ AB = AC  

Draw the angle bisector of ∠A that meets BC at D 
(Figure 11).  
∴ ∠DAB = ∠DAC = ½∠A 
∴ ΔABD ≅ ΔACD by AAS  
∴ AC = AB 

Part B: side relations implying angle 
relations  

Paper Folding 

Similarly to compare any 2 angles, one can halve 
their common side, i.e., fold the perpendicular 
bisector of their common side (Figure 12).  

Observe how the folded figure for scalene (or 
unequal angles) overlapped with the unfolded 
triangle generates the diagram on the right 
(Figure 13).  

Here the corresponding theorems are as follows:  

Figure 9. 

Figure 12. 
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Theorem 3: In ΔABC, AB < AC ⇒ ∠C < ∠B  

Draw the perpendicular bisector of BC that meets 
AC at E*, while D is the midpoint of BC  
∴ CD = BD and ∠EDC = ∠EDB 
And since ED is common side, by SAS, ΔEDC ≅ 
ΔEDB 
∴ ∠C = ∠ECD = ∠EBD < ∠ABD = ∠B  
* For an explanation of why E is always between A 
and C see ** below 

For isosceles triangles, i.e., AB = AC ⇒ ∠C = ∠B, 
the fold is the perpendicular bisector of BC (which 
one can observe goes through A). The proof uses 
the perpendicular from A to BC. Therefore though 
the lines are all same, their meanings are a bit 
different.

**It always used to bother me why the 
perpendicular bisector of BC will intersect the 
larger side AC as opposed to the shorter one AB. 
On reflection the following turns out: Let AH ⊥ BC 
(Figure 14), ∴ by Pythagoras AC2 = AH2 + CH2 and 
AB2 = AH2 + BH2, AH is common, AB < AC ⇒ BH 
< CH ∴ the midpoint D of BC falls within CH ∴ the 
perpendicular bisector of BC cuts side AC and not 
side AB.

Note how this involves Pythagoras which comes 
much later in the syllabus. But the similar logic in 

“angle to side” i.e., ∠C < ∠B ⇒ AB < AC is simpler. 
However, textbooks usually include the proof of 
“side to angle” i.e., AB < AC ⇒ ∠C < ∠B without 
mentioning the above. Then “angle to side” is 
proved by contradiction.

The reader can explore which other properties of 
triangles and quadrilaterals (and angles) can be 
demonstrated through folding.

One figure stands out as an exception to the 
above, as we cannot use folding to check its 
properties. Any guesses? It’s the parallelogram. 
Why? Recall that folds correspond precisely to 
line symmetry. Incidentally, the parallelogram is 
the only quadrilateral that has rotational but not 
line symmetry. Every other quadrilateral with 
any kind of symmetry has a line of symmetry. 
The only property of the parallelogram that can 
be demonstrated with folds is that the diagonals 
bisect each other. I will leave it to the reader 
to figure out how to do so. You can refer to the 
annexure for the basic folds. Interestingly these 
basic folds have a 1-1 onto mapping with the basic 
constructions!

But before going more deeply into comparing 
folds with constructions (with compass and 
straight edge), let me get back to the original 
theme. This symmetry aspect of folding is 
crucially used in one profession whose benefits 
we all enjoy. Can you name this profession? It 
is tailoring. We human beings externally have 
bilateral symmetry on a gross scale. Naturally, our 
clothing imitates that. And the tailor smartly uses 
this symmetry by folding the cloth before drawing 
and cutting.

Let me wrap it up (or fold it) with a treat that 
folding enables but Euclidean straight-edge and 
compass construction does not: trisecting an 
angle. It is possible to trisect any angle by folding, 
but we know that we cannot do the same with 
a compass and straight edge. If you are curious 
about this, please refer to At Right Angles, Volume 
1, No. 2, “Axioms of Paper Folding” (page 16) by 
Shiv Gaur.

Figure 13. 
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