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in the classroom

A property of prime numbers

The following is a striking property of the primes: 

If p is a prime number exceeding 3, then p2 -1 is a multiple of 24. 

In general, statements about prime numbers are daunting to prove — 
in part because the primes are so highly irregular in their distribution. 
Indeed, we do not have any formula to generate the primes. So how 
might we go about proving the above statement? 

Let’s check it first. The primes exceeding 3 are: 5, 7, 11, 13, 17, 19, 23, 
. . . . Squaring them and subtracting 1, we get the numbers 24, 48, 120, 
168, 288, 360, 528, . . . . It is easily checked that each of these numbers 
is a multiple of 24. Indeed, their greatest common factor or GCD is 24. 
(Another term for GCD is HCF: ‘highest common factor’. But GCD is 
currently the accepted term in higher mathematics.) 

A strategy for proving the result. Here is an approach to finding a 
proof: Suppose that the claim is true. What does it lead to, what does it 
imply? By studying these implications, can we uncover a proof? Let’s do 
just this. An obvious implication of the given statement, which holds 
because 24 = 3 ×8, is the following: If p is a prime number exceeding 3, 
then p2 -1 is a multiple of both 3 and 8. 
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How To Prove It
This continues the ‘Proof’ column begun earlier. In this ‘episode’ 
we study some problems concerning the prime numbers, and a 
theorem from triangle geometry.

Now an idea strikes us. If we show that a number
𝐾𝐾 is a multiple of both 3 and 8, would it follow
that 𝐾𝐾 is a multiple of 24? Yes. The reason for this
is seen by listing the multiples of 3 (namely: 3, 6,
9, 12, 15, 18, 21, 24, 27, 30, …) and the multiples
of 8 (namely: 8, 16, 24, 32, 40, …). On examining
these lists we �ind that the numbers common to
them are 24, 48, 72, …; they are all multiples of
the least number in the list, which is 24 (that‘s
precisely why 24 is called the ‘least common
multiple’ or ��� of 3 and 8).
So we have found a strategy for solving the
problem: Prove that if 𝑝𝑝 𝑝 3 is prime, then 𝑝𝑝� − 1
is divisible by both 3 and by 8.
But this is easy!
Divisibility by 8 Since 𝑝𝑝 is a prime number
exceeding 3, it is odd. But we know from what we
proved in the last issue (How To Prove It,
November 2013) that if 𝑛𝑛 is odd, then 𝑛𝑛� − 1 is a
multiple of 8. Hence it must be true that if 𝑝𝑝 𝑝 3 is
a prime number, 𝑝𝑝� − 1 is a multiple of 8.
(For those who missed the last issue, here is a
quick proof. Let 𝑛𝑛 be odd. Then 𝑛𝑛 𝑛 2𝑛𝑛 𝑛 1 for
some integer 𝑛𝑛. This yields:
𝑛𝑛� − 1 𝑛 (2𝑛𝑛 𝑛 1𝑘� − 1 𝑛 4𝑛𝑛� 𝑛 4𝑛𝑛 𝑛 4𝑛𝑛(𝑛𝑛 𝑛 1𝑘.
Since 𝑛𝑛 and 𝑛𝑛 𝑛 1 are a pair of consecutive
integers, one of them is even, hence 𝑛𝑛(𝑛𝑛 𝑛 1𝑘 is
even; and this implies that 4𝑛𝑛(𝑛𝑛 𝑛 1𝑘 is a multiple
of 8. Hence 𝑛𝑛� − 1 is a multiple of 8.)
Divisibility by 3 Since 𝑝𝑝 𝑝 3 is prime, on division
by 3 it leaves a remainder of 1 or 2. So 𝑝𝑝 𝑛 3𝑛𝑛 𝑛 1
or 3𝑛𝑛 𝑛 2 for some integer 𝑛𝑛. Now we need to
check the divisibility of 𝑝𝑝� − 1 by 3 for these two
forms.

• If 𝑝𝑝 𝑛 3𝑛𝑛 𝑛 1, then
𝑝𝑝� − 1 𝑛 (3𝑛𝑛 𝑛 1𝑘� − 1 𝑛 9𝑛𝑛� 𝑛 6𝑛𝑛, which is
a multiple of 3.

• If 𝑝𝑝 𝑛 3𝑛𝑛 𝑛 2, then
𝑝𝑝� − 1 𝑛 (3𝑛𝑛 𝑛 2𝑘� − 1 𝑛 9𝑛𝑛� 𝑛 12𝑛𝑛 𝑛 3,
which too is a multiple of 3.

Either way, 𝑝𝑝� − 1 is a multiple of 3.
Since 𝑝𝑝� − 1 is a multiple of both 3 and 8, it
follows that 𝑝𝑝� − 1 is a multiple of 24.
Remark on the strategy followed You may
wonder why we selected the numbers 3 and 8.

Because 3 × 8 𝑛 24? Not quite. Instead of 3 and 8,
what if we select 4 and 6? It is easy to show that if
𝑝𝑝 𝑝 3 is prime, 𝑝𝑝� − 1 is a multiple of both 4 and
6. But since the ��� of 4 and 6 is 12, this would
only prove that 𝑝𝑝� − 1 is a multiple of 12. It would
not prove that 𝑝𝑝� − 1 is a multiple of 24.
Here are two more such results. In both we
consider the effect of division by 120.

1. If 𝑝𝑝 is a prime number exceeding 5, the
remainder when 𝑝𝑝� is divided by 120 is either
1 or 49.

2. If 𝑝𝑝 is a prime number exceeding 5, then
𝑝𝑝� − 1 is a multiple of 120.

For example, take the primes 17 and 19. We have:

17� 𝑛 289 𝑛 (120 × 2𝑘 𝑛 49,
19� 𝑛 361 𝑛 (120 × 3𝑘 𝑛 1,

and:

17� − 1 𝑛 83520 𝑛 120 × 696,
19� − 1 𝑛 130320 𝑛 120 × 1086.

We ask you to �ind the proofs of these statements.
Hint. 120 𝑛 3 × 5 × 8. Hence you must consider
the effect of dividing 𝑝𝑝� by 3, 5 and 8 respectively.
Direct and Indirect Proof
Proofs do not all follow the same approach; they
come in different �lavours and different colours.
For example, proofs can be direct or indirect, and
this is a crucial distinction. We now elaborate on
this matter. Say we are given two ‘propositions’ or
assertions, 𝑃𝑃 and 𝑄𝑄, and we are required to show:
“If 𝑃𝑃 is true, then 𝑄𝑄 is true” (more brie�ly: “If 𝑃𝑃,
then 𝑄𝑄”, or “𝑃𝑃 𝑃 𝑄𝑄”). A “direct proof” is one
where we start with 𝑃𝑃 and travel ‘directly’ to 𝑄𝑄,
along a linear chain of deductions. In an ‘indirect
proof’ the starting point may not be 𝑃𝑃. Instead we
may ask: Could it be that 𝑄𝑄 is not true? What
might be the consequences of assuming that 𝑄𝑄 is
not true? What would it tell us about 𝑃𝑃? Thus we
consider various alternatives to 𝑄𝑄 and then
eliminate them, one by one, forcing us to ‘accept’𝑄𝑄.
Direct proof We give two examples of direct
proof. Note how they start with the given premise
and proceed in a linear way to the desired
conclusion.
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𝐾𝐾 is a multiple of both 3 and 8, would it follow
that 𝐾𝐾 is a multiple of 24? Yes. The reason for this
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Example 1. Prove: “For any integer 𝑛𝑛, the
remainder in the division 𝑛𝑛� ÷ 4 is 0 or 1.”
Proof: Suppose that 𝑛𝑛 is even. Then 𝑛𝑛 𝑛 𝑛𝑛𝑛 where
𝑛𝑛 is some integer. This implies that 𝑛𝑛� 𝑛 4𝑛𝑛�, so
𝑛𝑛� is a multiple of 4.
Next, suppose that 𝑛𝑛 is odd. Then 𝑛𝑛 𝑛 𝑛𝑛𝑛 𝑛 1
where 𝑛𝑛 is some integer. This implies that
𝑛𝑛� 𝑛 4𝑛𝑛� 𝑛 4𝑛𝑛 𝑛 1 𝑛 4𝑛𝑛𝑘𝑛𝑛 𝑛 1𝑘 𝑛 1, and we see
that 𝑛𝑛� is 1more than a multiple of 4 and hence
leaves a remainder of 1 under division by 4.
Example 2. Prove: “If 𝑛𝑛 is a positive integer such
that the number 𝑥𝑥 𝑥𝑛 𝑛� − 1 is prime, then the
number �

�𝑥𝑥𝑘𝑥𝑥 𝑛 1𝑘 is perfect.” (A ‘perfect number’
is one for which the sum of the proper divisors
equals the number itself. Example: 6 is perfect,
since 1 𝑛 𝑛 𝑛 3 𝑛 6. In the rule stated, if we take
𝑛𝑛 𝑛 3, we get 𝑥𝑥 𝑛 𝑥, which is prime, and this gives
us the perfect number �

�𝑘𝑥 × 8𝑘 𝑛 𝑛8. This
general rule was �irst mentioned by Euclid in The
Elements.)
Proof: We must show that �

�𝑥𝑥𝑘𝑥𝑥 𝑛 1𝑘 𝑛 𝑛��� ⋅ 𝑥𝑥 is
perfect. The number has two distinct prime
divisors (𝑛 and 𝑥𝑥). This fact enables us to
enumerate its full list of divisors:

� 1, 𝑛, 𝑛�, 𝑛�, … , 𝑛���,
𝑥𝑥, 𝑛𝑥𝑥, 𝑛� ⋅ 𝑥𝑥, 𝑛� ⋅ 𝑥𝑥, … , 𝑛��� ⋅ 𝑥𝑥𝑥

Of these, all are proper factors except the very last
one, 𝑛��� ⋅ 𝑥𝑥, which is the number itself. We must
now �ind the sum of all the proper factors. For this
we use an often-used identity: The s�m of the �irst
several powers of 𝑛, starting with 1, is 1 less than
the next higher power of 𝑛. Thus, 1 𝑛 𝑛 𝑛 𝑛� − 1,
1 𝑛 𝑛 𝑛 𝑛� 𝑛 𝑛� − 1, 1 𝑛 𝑛 𝑛 𝑛� 𝑛 𝑛� 𝑛 𝑛� − 1,
and so on. �sing the identity we �ind the sum of
the proper factors of 𝑛��� ⋅ 𝑥𝑥:

𝑘� � � � �� � � � ����𝑘 � 𝑘� � � � �� � � � ����𝑘 �

� 𝑘�� � �𝑘 � 𝑘���� � �𝑘 � � � � 𝑘���� � �𝑘 �

� ���� ⋅ �𝑥

So the sum of the proper factors of 𝑛��� ⋅ 𝑥𝑥 equals
the original number, 𝑛��� ⋅ 𝑥𝑥, just as we wished to
prove.
Indirect proof Direct proof may seem the most
natural kind of proof. But there are situations
where a direct proof does not seem possible, or is
too dif�icult. In such cases, it may be simpler to
look for an indirect proof. Here, the signi�icance of
the word ‘indirect’ is that the proof proceeds by

elimination of the alternatives other than the one
we wish to prove. Occasionally we come across
situations where the indirect route is more
natural than the direct one; it may even be
aesthetically more pleasing. A few examples will
serve to illustrate these comments.
Example 3. Prove: “If 𝑛𝑛 𝑛 1 is an integer such that
𝑛� − 1 is prime, then 𝑛𝑛 is prime.”
Proof: How do we show that a number (known to
exceed 1) is prime? Here are two ways: either we
show that it has no proper divisors; or we show
that it cannot be composite. The latter is the
indirect way, and it is what we adopt here.
2mm]We have been told that 𝑛� − 1 is prime.
Since 𝑛𝑛 is either prime or composite, there are
two possible situations which can occur:
(A) 𝑛� − 1 is prime and 𝑛𝑛 is prime.
(B)𝑛� − 1 is prime and 𝑛𝑛 is composite.
These two possibilities are contrary to each other
(they cannot both occur). Also, there are no
possibilities other than these. (So (A) and (B)
form a mutually exclusive list.) We wish to show
that it is (A) that occurs, and an obvious strategy
for doing so is to show that (B) cannot occur. This
is what we now do.
Suppose that 𝑛𝑛 𝑛 1 is composite; then 𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛 for
some two integers 𝑛𝑛 𝑛 1 and 𝑛𝑛 𝑛 1, and
𝑛� − 1 𝑛 𝑛�� − 1. Let 𝑛𝑛 𝑛 𝑛� . Then:

𝑛� − 1 𝑛 𝑘𝑛�𝑘� − 1 𝑛 𝑛𝑛� − 1𝑥 (1)

The number 𝑛𝑛� − 1 has a factorization which is
easy to anticipate:

𝑛𝑛�−1 𝑛 𝑘𝑛𝑛−1𝑘 �𝑛𝑛��� 𝑛 𝑛𝑛��� 𝑛 𝑛𝑛��� 𝑛 � 𝑛 𝑛𝑛 𝑛 1� 𝑥
(2)

(This comes from observing that
𝑛𝑛� − 1 𝑛 𝑘𝑛𝑛 − 1𝑘𝑘𝑛𝑛 𝑛 1𝑘,
𝑛𝑛� − 1 𝑛 𝑘𝑛𝑛 − 1𝑘 �𝑛𝑛� 𝑛 𝑛𝑛 𝑛 1�, etc.)
Both factors in the factorization (2) exceed 1; for,
the smaller of the two factors is 𝑛𝑛 − 1, and
𝑛𝑛 − 1 𝑛 𝑛� − 1which exceeds 1 since 𝑛𝑛 exceeds 1.
Hence 𝑛𝑛� − 1 is not prime, i.e., 𝑛� − 1 is not prime.
Note what has happened: by supposing that 𝑛𝑛 is
composite, it has turned out that 𝑛� − 1 is
composite as well. But this means that possibility
(B) has been falsi�ied; it cannot occur. Hence it is
possibility (A) which must occur. Therefore, if
𝑛� − 1 is prime, it must be that 𝑛𝑛 itself is prime.
Do you see why this proof is called ‘indirect’?

4

Example 5. Prove: “If a triangle has two equal
angles, then the sides opposite to the equal angles
are equal.” Stated otherwise: “In △𝐴𝐴𝐴𝐴𝐴𝐴, if
∠𝐴𝐴 𝐵 ∠𝐴𝐴, then 𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴.”
Proof: First, some background. This problem is
Theorem I.6 in The Elements; it comes just after
I.5: “In an isosceles triangle, the angles opposite
the equal sides are equal.” (Or: “In △𝐴𝐴𝐴𝐴𝐴𝐴, if
𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴, then ∠𝐴𝐴 𝐵 ∠𝐴𝐴.”) At this point in the text,
the only congruence result available is “SAS
congruence” (I.4): “If two sides of one triangle are
equal, respectively, to two sides of another
triangle, and the angles included by the two pairs
of sides are equal, then the two triangles are
congruent to each other.” (The fact that the angle
is ‘included’between the two sides is crucial.)
Euclid uses it to prove I.5 as shown in Figure 1.
If we attempt to prove Theorem I.6 the same way,
we run into a dif�iculty. Try it out for yourself! �ou
will �ind that no matter where we locate 𝐷𝐷 on 𝐴𝐴𝐴𝐴
(possibilities: foot of internal bisector of angle
𝐴𝐴𝐴𝐴𝐴𝐴; midpoint of 𝐴𝐴𝐴𝐴; foot of perpendicular from
𝐴𝐴 to 𝐴𝐴𝐴𝐴), we are unable, using SAS congruence, to
show that △𝐴𝐴𝐴𝐴𝐷𝐷 𝐴 △𝐴𝐴𝐴𝐴𝐷𝐷. In each case, we �ind
that ‘SAS’ fails to apply; either the sides are wrong,
or the angle itself is wrong.

Given: 𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴. Draw 𝐴𝐴𝐷𝐷 to bisect ∠𝐴𝐴𝐴𝐴𝐴𝐴. Now
compare △𝐴𝐴𝐴𝐴𝐷𝐷 and △𝐴𝐴𝐴𝐴𝐷𝐷.
SAS congruence applies: 𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐷𝐷 is a shared
side, and ∠𝐴𝐴𝐴𝐴𝐷𝐷 𝐵 ∠𝐴𝐴𝐴𝐴𝐷𝐷. Hence △𝐴𝐴𝐴𝐴𝐷𝐷 𝐴 △𝐴𝐴𝐴𝐴𝐷𝐷,
and ∠𝐴𝐴 𝐵 ∠𝐴𝐴.

Given: ∠𝐴𝐴𝐴𝐴𝐴𝐴 𝐵 ∠𝐴𝐴𝐴𝐴𝐴𝐴. Suppose 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. Locate
𝐷𝐷 on 𝐴𝐴𝐴𝐴 such that 𝐷𝐷𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴. Now compare △𝐷𝐷𝐴𝐴𝐴𝐴
and △𝐴𝐴𝐴𝐴𝐴𝐴.
SAS congruence applies: 𝐷𝐷𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴, and
∠𝐷𝐷𝐴𝐴𝐴𝐴 𝐵 ∠𝐴𝐴𝐴𝐴𝐴𝐴. Hence △𝐷𝐷𝐴𝐴𝐴𝐴 𝐴 △𝐴𝐴𝐴𝐴𝐴𝐴. But this is
absurd!
So Euclid uses a different strategy, and it is very
ingenious. He asks, “Suppose that what is to be
proved is not true (i.e., the sides are not equal).
What happens then?” Now the possibility that
𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴 can be subdivided into two possibilities:
𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. If we can show that both
these are not possible (or “absurd” to use Euclid's
words), then the desired conclusion would follow
(𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴). To carry out this aim, Euclid assumes
that 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, argues as in Figure 2, and arrives at
the conclusion that △𝐷𝐷𝐴𝐴𝐴𝐴 𝐴 △𝐴𝐴𝐴𝐴𝐴𝐴. But this is
absurd, since △𝐷𝐷𝐴𝐴𝐴𝐴 is contained within △𝐴𝐴𝐴𝐴𝐴𝐴,
and the part cannot be equal to the whole. The
absurd conclusion came about because of what
we had assumed: 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. If we had assumed
instead that 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, a similar absurdity would
follow. So neither of these assumptions can be
made. But then the only possibility left is
𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴. And this is just what we wanted to
show.
Note the indirectness of the strategy. The direct
approach was found to be infeasible, so Euclid
adopts the indirect route. His proof is an example
of proof by contradiction.
Closing remark. When you see indirect proof for
the �irst time in a mathematics class, you may get
the impression that it is a form of reasoning
peculiar to mathematics. But in fact we employ
this kind of reasoning routinely in daily life,
without realizing it. When you read a crime
thriller and encounter the word ‘alibi’, you are
dealing with just this form of reasoning! Here's
how this happens. Say a crime has occurred in
some house, and the police have pinpointed the
time of the crime: it happened at 11 pm. The chief
suspect for the crime is Mr. X. But the hopes of the
police to lay the blame on Mr. X are dashed when
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Example 5. Prove: “If a triangle has two equal
angles, then the sides opposite to the equal angles
are equal.” Stated otherwise: “In △𝐴𝐴𝐴𝐴𝐴𝐴, if
∠𝐴𝐴 𝐵 ∠𝐴𝐴, then 𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴.”
Proof: First, some background. This problem is
Theorem I.6 in The Elements; it comes just after
I.5: “In an isosceles triangle, the angles opposite
the equal sides are equal.” (Or: “In △𝐴𝐴𝐴𝐴𝐴𝐴, if
𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴, then ∠𝐴𝐴 𝐵 ∠𝐴𝐴.”) At this point in the text,
the only congruence result available is “SAS
congruence” (I.4): “If two sides of one triangle are
equal, respectively, to two sides of another
triangle, and the angles included by the two pairs
of sides are equal, then the two triangles are
congruent to each other.” (The fact that the angle
is ‘included’between the two sides is crucial.)
Euclid uses it to prove I.5 as shown in Figure 1.
If we attempt to prove Theorem I.6 the same way,
we run into a dif�iculty. Try it out for yourself! �ou
will �ind that no matter where we locate 𝐷𝐷 on 𝐴𝐴𝐴𝐴
(possibilities: foot of internal bisector of angle
𝐴𝐴𝐴𝐴𝐴𝐴; midpoint of 𝐴𝐴𝐴𝐴; foot of perpendicular from
𝐴𝐴 to 𝐴𝐴𝐴𝐴), we are unable, using SAS congruence, to
show that △𝐴𝐴𝐴𝐴𝐷𝐷 𝐴 △𝐴𝐴𝐴𝐴𝐷𝐷. In each case, we �ind
that ‘SAS’ fails to apply; either the sides are wrong,
or the angle itself is wrong.

Given: 𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴. Draw 𝐴𝐴𝐷𝐷 to bisect ∠𝐴𝐴𝐴𝐴𝐴𝐴. Now
compare △𝐴𝐴𝐴𝐴𝐷𝐷 and △𝐴𝐴𝐴𝐴𝐷𝐷.
SAS congruence applies: 𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐷𝐷 is a shared
side, and ∠𝐴𝐴𝐴𝐴𝐷𝐷 𝐵 ∠𝐴𝐴𝐴𝐴𝐷𝐷. Hence △𝐴𝐴𝐴𝐴𝐷𝐷 𝐴 △𝐴𝐴𝐴𝐴𝐷𝐷,
and ∠𝐴𝐴 𝐵 ∠𝐴𝐴.

Given: ∠𝐴𝐴𝐴𝐴𝐴𝐴 𝐵 ∠𝐴𝐴𝐴𝐴𝐴𝐴. Suppose 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. Locate
𝐷𝐷 on 𝐴𝐴𝐴𝐴 such that 𝐷𝐷𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴. Now compare △𝐷𝐷𝐴𝐴𝐴𝐴
and △𝐴𝐴𝐴𝐴𝐴𝐴.
SAS congruence applies: 𝐷𝐷𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴, and
∠𝐷𝐷𝐴𝐴𝐴𝐴 𝐵 ∠𝐴𝐴𝐴𝐴𝐴𝐴. Hence △𝐷𝐷𝐴𝐴𝐴𝐴 𝐴 △𝐴𝐴𝐴𝐴𝐴𝐴. But this is
absurd!
So Euclid uses a different strategy, and it is very
ingenious. He asks, “Suppose that what is to be
proved is not true (i.e., the sides are not equal).
What happens then?” Now the possibility that
𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴 can be subdivided into two possibilities:
𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. If we can show that both
these are not possible (or “absurd” to use Euclid's
words), then the desired conclusion would follow
(𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴). To carry out this aim, Euclid assumes
that 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, argues as in Figure 2, and arrives at
the conclusion that △𝐷𝐷𝐴𝐴𝐴𝐴 𝐴 △𝐴𝐴𝐴𝐴𝐴𝐴. But this is
absurd, since △𝐷𝐷𝐴𝐴𝐴𝐴 is contained within △𝐴𝐴𝐴𝐴𝐴𝐴,
and the part cannot be equal to the whole. The
absurd conclusion came about because of what
we had assumed: 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. If we had assumed
instead that 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, a similar absurdity would
follow. So neither of these assumptions can be
made. But then the only possibility left is
𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴. And this is just what we wanted to
show.
Note the indirectness of the strategy. The direct
approach was found to be infeasible, so Euclid
adopts the indirect route. His proof is an example
of proof by contradiction.
Closing remark. When you see indirect proof for
the �irst time in a mathematics class, you may get
the impression that it is a form of reasoning
peculiar to mathematics. But in fact we employ
this kind of reasoning routinely in daily life,
without realizing it. When you read a crime
thriller and encounter the word ‘alibi’, you are
dealing with just this form of reasoning! Here's
how this happens. Say a crime has occurred in
some house, and the police have pinpointed the
time of the crime: it happened at 11 pm. The chief
suspect for the crime is Mr. X. But the hopes of the
police to lay the blame on Mr. X are dashed when
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We have been told that 2n – 1 is prime.
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Example 5. Prove: “If a triangle has two equal
angles, then the sides opposite to the equal angles
are equal.” Stated otherwise: “In △𝐴𝐴𝐴𝐴𝐴𝐴, if
∠𝐴𝐴 𝐵 ∠𝐴𝐴, then 𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴.”
Proof: First, some background. This problem is
Theorem I.6 in The Elements; it comes just after
I.5: “In an isosceles triangle, the angles opposite
the equal sides are equal.” (Or: “In △𝐴𝐴𝐴𝐴𝐴𝐴, if
𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴, then ∠𝐴𝐴 𝐵 ∠𝐴𝐴.”) At this point in the text,
the only congruence result available is “SAS
congruence” (I.4): “If two sides of one triangle are
equal, respectively, to two sides of another
triangle, and the angles included by the two pairs
of sides are equal, then the two triangles are
congruent to each other.” (The fact that the angle
is ‘included’between the two sides is crucial.)
Euclid uses it to prove I.5 as shown in Figure 1.
If we attempt to prove Theorem I.6 the same way,
we run into a dif�iculty. Try it out for yourself! �ou
will �ind that no matter where we locate 𝐷𝐷 on 𝐴𝐴𝐴𝐴
(possibilities: foot of internal bisector of angle
𝐴𝐴𝐴𝐴𝐴𝐴; midpoint of 𝐴𝐴𝐴𝐴; foot of perpendicular from
𝐴𝐴 to 𝐴𝐴𝐴𝐴), we are unable, using SAS congruence, to
show that △𝐴𝐴𝐴𝐴𝐷𝐷 𝐴 △𝐴𝐴𝐴𝐴𝐷𝐷. In each case, we �ind
that ‘SAS’ fails to apply; either the sides are wrong,
or the angle itself is wrong.

Given: 𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴. Draw 𝐴𝐴𝐷𝐷 to bisect ∠𝐴𝐴𝐴𝐴𝐴𝐴. Now
compare △𝐴𝐴𝐴𝐴𝐷𝐷 and △𝐴𝐴𝐴𝐴𝐷𝐷.
SAS congruence applies: 𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐷𝐷 is a shared
side, and ∠𝐴𝐴𝐴𝐴𝐷𝐷 𝐵 ∠𝐴𝐴𝐴𝐴𝐷𝐷. Hence △𝐴𝐴𝐴𝐴𝐷𝐷 𝐴 △𝐴𝐴𝐴𝐴𝐷𝐷,
and ∠𝐴𝐴 𝐵 ∠𝐴𝐴.

Given: ∠𝐴𝐴𝐴𝐴𝐴𝐴 𝐵 ∠𝐴𝐴𝐴𝐴𝐴𝐴. Suppose 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. Locate
𝐷𝐷 on 𝐴𝐴𝐴𝐴 such that 𝐷𝐷𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴. Now compare △𝐷𝐷𝐴𝐴𝐴𝐴
and △𝐴𝐴𝐴𝐴𝐴𝐴.
SAS congruence applies: 𝐷𝐷𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴, and
∠𝐷𝐷𝐴𝐴𝐴𝐴 𝐵 ∠𝐴𝐴𝐴𝐴𝐴𝐴. Hence △𝐷𝐷𝐴𝐴𝐴𝐴 𝐴 △𝐴𝐴𝐴𝐴𝐴𝐴. But this is
absurd!
So Euclid uses a different strategy, and it is very
ingenious. He asks, “Suppose that what is to be
proved is not true (i.e., the sides are not equal).
What happens then?” Now the possibility that
𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴 can be subdivided into two possibilities:
𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. If we can show that both
these are not possible (or “absurd” to use Euclid's
words), then the desired conclusion would follow
(𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴). To carry out this aim, Euclid assumes
that 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, argues as in Figure 2, and arrives at
the conclusion that △𝐷𝐷𝐴𝐴𝐴𝐴 𝐴 △𝐴𝐴𝐴𝐴𝐴𝐴. But this is
absurd, since △𝐷𝐷𝐴𝐴𝐴𝐴 is contained within △𝐴𝐴𝐴𝐴𝐴𝐴,
and the part cannot be equal to the whole. The
absurd conclusion came about because of what
we had assumed: 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. If we had assumed
instead that 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, a similar absurdity would
follow. So neither of these assumptions can be
made. But then the only possibility left is
𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴. And this is just what we wanted to
show.
Note the indirectness of the strategy. The direct
approach was found to be infeasible, so Euclid
adopts the indirect route. His proof is an example
of proof by contradiction.
Closing remark. When you see indirect proof for
the �irst time in a mathematics class, you may get
the impression that it is a form of reasoning
peculiar to mathematics. But in fact we employ
this kind of reasoning routinely in daily life,
without realizing it. When you read a crime
thriller and encounter the word ‘alibi’, you are
dealing with just this form of reasoning! Here's
how this happens. Say a crime has occurred in
some house, and the police have pinpointed the
time of the crime: it happened at 11 pm. The chief
suspect for the crime is Mr. X. But the hopes of the
police to lay the blame on Mr. X are dashed when
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Example 5. Prove: “If a triangle has two equal
angles, then the sides opposite to the equal angles
are equal.” Stated otherwise: “In △𝐴𝐴𝐴𝐴𝐴𝐴, if
∠𝐴𝐴 𝐵 ∠𝐴𝐴, then 𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴.”
Proof: First, some background. This problem is
Theorem I.6 in The Elements; it comes just after
I.5: “In an isosceles triangle, the angles opposite
the equal sides are equal.” (Or: “In △𝐴𝐴𝐴𝐴𝐴𝐴, if
𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴, then ∠𝐴𝐴 𝐵 ∠𝐴𝐴.”) At this point in the text,
the only congruence result available is “SAS
congruence” (I.4): “If two sides of one triangle are
equal, respectively, to two sides of another
triangle, and the angles included by the two pairs
of sides are equal, then the two triangles are
congruent to each other.” (The fact that the angle
is ‘included’between the two sides is crucial.)
Euclid uses it to prove I.5 as shown in Figure 1.
If we attempt to prove Theorem I.6 the same way,
we run into a dif�iculty. Try it out for yourself! �ou
will �ind that no matter where we locate 𝐷𝐷 on 𝐴𝐴𝐴𝐴
(possibilities: foot of internal bisector of angle
𝐴𝐴𝐴𝐴𝐴𝐴; midpoint of 𝐴𝐴𝐴𝐴; foot of perpendicular from
𝐴𝐴 to 𝐴𝐴𝐴𝐴), we are unable, using SAS congruence, to
show that △𝐴𝐴𝐴𝐴𝐷𝐷 𝐴 △𝐴𝐴𝐴𝐴𝐷𝐷. In each case, we �ind
that ‘SAS’ fails to apply; either the sides are wrong,
or the angle itself is wrong.

Given: 𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴. Draw 𝐴𝐴𝐷𝐷 to bisect ∠𝐴𝐴𝐴𝐴𝐴𝐴. Now
compare △𝐴𝐴𝐴𝐴𝐷𝐷 and △𝐴𝐴𝐴𝐴𝐷𝐷.
SAS congruence applies: 𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐷𝐷 is a shared
side, and ∠𝐴𝐴𝐴𝐴𝐷𝐷 𝐵 ∠𝐴𝐴𝐴𝐴𝐷𝐷. Hence △𝐴𝐴𝐴𝐴𝐷𝐷 𝐴 △𝐴𝐴𝐴𝐴𝐷𝐷,
and ∠𝐴𝐴 𝐵 ∠𝐴𝐴.

Given: ∠𝐴𝐴𝐴𝐴𝐴𝐴 𝐵 ∠𝐴𝐴𝐴𝐴𝐴𝐴. Suppose 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. Locate
𝐷𝐷 on 𝐴𝐴𝐴𝐴 such that 𝐷𝐷𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴. Now compare △𝐷𝐷𝐴𝐴𝐴𝐴
and △𝐴𝐴𝐴𝐴𝐴𝐴.
SAS congruence applies: 𝐷𝐷𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴, and
∠𝐷𝐷𝐴𝐴𝐴𝐴 𝐵 ∠𝐴𝐴𝐴𝐴𝐴𝐴. Hence △𝐷𝐷𝐴𝐴𝐴𝐴 𝐴 △𝐴𝐴𝐴𝐴𝐴𝐴. But this is
absurd!
So Euclid uses a different strategy, and it is very
ingenious. He asks, “Suppose that what is to be
proved is not true (i.e., the sides are not equal).
What happens then?” Now the possibility that
𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴 can be subdivided into two possibilities:
𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. If we can show that both
these are not possible (or “absurd” to use Euclid's
words), then the desired conclusion would follow
(𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴). To carry out this aim, Euclid assumes
that 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, argues as in Figure 2, and arrives at
the conclusion that △𝐷𝐷𝐴𝐴𝐴𝐴 𝐴 △𝐴𝐴𝐴𝐴𝐴𝐴. But this is
absurd, since △𝐷𝐷𝐴𝐴𝐴𝐴 is contained within △𝐴𝐴𝐴𝐴𝐴𝐴,
and the part cannot be equal to the whole. The
absurd conclusion came about because of what
we had assumed: 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. If we had assumed
instead that 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, a similar absurdity would
follow. So neither of these assumptions can be
made. But then the only possibility left is
𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴. And this is just what we wanted to
show.
Note the indirectness of the strategy. The direct
approach was found to be infeasible, so Euclid
adopts the indirect route. His proof is an example
of proof by contradiction.
Closing remark. When you see indirect proof for
the �irst time in a mathematics class, you may get
the impression that it is a form of reasoning
peculiar to mathematics. But in fact we employ
this kind of reasoning routinely in daily life,
without realizing it. When you read a crime
thriller and encounter the word ‘alibi’, you are
dealing with just this form of reasoning! Here's
how this happens. Say a crime has occurred in
some house, and the police have pinpointed the
time of the crime: it happened at 11 pm. The chief
suspect for the crime is Mr. X. But the hopes of the
police to lay the blame on Mr. X are dashed when
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So Euclid uses a different strategy, and it is very ingenious. He asks, “Suppose that
what is to be proved is not true (i.e., the sides are not equal). What happens then?” Now
the possibility that AB ≠ AC can be subdivided into two possibilities: AB > AC, AC > AB.
If we can show that both these are not possible (or “absurd” to use Euclid’s words), then
the desired conclusion would follow (AB =AC). To carry out this aim, Euclid assumes that
AB > AC, argues as in Figure 2, and arrives at the conclusion that △DBC ≅△ACB. But
this is absurd, since△DBC is contained within△ACB, and the part cannot be equal to the
whole. The absurd conclusion came about because of what we had assumed: AB > AC.
If we had assumed instead that AC > AB, a similar absurdity would follow. So neither of
these assumptions can be made. But then the only possibility left is AB = AC. And this is
just what we wanted to show. �
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Example 1. Prove: “For any integer 𝑛𝑛, the
remainder in the division 𝑛𝑛� ÷ 4 is 0 or 1.”
Proof: Suppose that 𝑛𝑛 is even. Then 𝑛𝑛 𝑛 𝑛𝑛𝑛 where
𝑛𝑛 is some integer. This implies that 𝑛𝑛� 𝑛 4𝑛𝑛�, so
𝑛𝑛� is a multiple of 4.
Next, suppose that 𝑛𝑛 is odd. Then 𝑛𝑛 𝑛 𝑛𝑛𝑛 𝑛 1
where 𝑛𝑛 is some integer. This implies that
𝑛𝑛� 𝑛 4𝑛𝑛� 𝑛 4𝑛𝑛 𝑛 1 𝑛 4𝑛𝑛𝑘𝑛𝑛 𝑛 1𝑘 𝑛 1, and we see
that 𝑛𝑛� is 1more than a multiple of 4 and hence
leaves a remainder of 1 under division by 4.
Example 2. Prove: “If 𝑛𝑛 is a positive integer such
that the number 𝑥𝑥 𝑥𝑛 𝑛� − 1 is prime, then the
number �

�𝑥𝑥𝑘𝑥𝑥 𝑛 1𝑘 is perfect.” (A ‘perfect number’
is one for which the sum of the proper divisors
equals the number itself. Example: 6 is perfect,
since 1 𝑛 𝑛 𝑛 3 𝑛 6. In the rule stated, if we take
𝑛𝑛 𝑛 3, we get 𝑥𝑥 𝑛 𝑥, which is prime, and this gives
us the perfect number �

�𝑘𝑥 × 8𝑘 𝑛 𝑛8. This
general rule was �irst mentioned by Euclid in The
Elements.)
Proof: We must show that �

�𝑥𝑥𝑘𝑥𝑥 𝑛 1𝑘 𝑛 𝑛��� ⋅ 𝑥𝑥 is
perfect. The number has two distinct prime
divisors (𝑛 and 𝑥𝑥). This fact enables us to
enumerate its full list of divisors:

� 1, 𝑛, 𝑛�, 𝑛�, … , 𝑛���,
𝑥𝑥, 𝑛𝑥𝑥, 𝑛� ⋅ 𝑥𝑥, 𝑛� ⋅ 𝑥𝑥, … , 𝑛��� ⋅ 𝑥𝑥𝑥

Of these, all are proper factors except the very last
one, 𝑛��� ⋅ 𝑥𝑥, which is the number itself. We must
now �ind the sum of all the proper factors. For this
we use an often-used identity: The s�m of the �irst
several powers of 𝑛, starting with 1, is 1 less than
the next higher power of 𝑛. Thus, 1 𝑛 𝑛 𝑛 𝑛� − 1,
1 𝑛 𝑛 𝑛 𝑛� 𝑛 𝑛� − 1, 1 𝑛 𝑛 𝑛 𝑛� 𝑛 𝑛� 𝑛 𝑛� − 1,
and so on. �sing the identity we �ind the sum of
the proper factors of 𝑛��� ⋅ 𝑥𝑥:

𝑘� � � � �� � � � ����𝑘 � 𝑘� � � � �� � � � ����𝑘 �

� 𝑘�� � �𝑘 � 𝑘���� � �𝑘 � � � � 𝑘���� � �𝑘 �

� ���� ⋅ �𝑥

So the sum of the proper factors of 𝑛��� ⋅ 𝑥𝑥 equals
the original number, 𝑛��� ⋅ 𝑥𝑥, just as we wished to
prove.
Indirect proof Direct proof may seem the most
natural kind of proof. But there are situations
where a direct proof does not seem possible, or is
too dif�icult. In such cases, it may be simpler to
look for an indirect proof. Here, the signi�icance of
the word ‘indirect’ is that the proof proceeds by

elimination of the alternatives other than the one
we wish to prove. Occasionally we come across
situations where the indirect route is more
natural than the direct one; it may even be
aesthetically more pleasing. A few examples will
serve to illustrate these comments.
Example 3. Prove: “If 𝑛𝑛 𝑛 1 is an integer such that
𝑛� − 1 is prime, then 𝑛𝑛 is prime.”
Proof: How do we show that a number (known to
exceed 1) is prime? Here are two ways: either we
show that it has no proper divisors; or we show
that it cannot be composite. The latter is the
indirect way, and it is what we adopt here.
2mm]We have been told that 𝑛� − 1 is prime.
Since 𝑛𝑛 is either prime or composite, there are
two possible situations which can occur:
(A) 𝑛� − 1 is prime and 𝑛𝑛 is prime.
(B)𝑛� − 1 is prime and 𝑛𝑛 is composite.
These two possibilities are contrary to each other
(they cannot both occur). Also, there are no
possibilities other than these. (So (A) and (B)
form a mutually exclusive list.) We wish to show
that it is (A) that occurs, and an obvious strategy
for doing so is to show that (B) cannot occur. This
is what we now do.
Suppose that 𝑛𝑛 𝑛 1 is composite; then 𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛 for
some two integers 𝑛𝑛 𝑛 1 and 𝑛𝑛 𝑛 1, and
𝑛� − 1 𝑛 𝑛�� − 1. Let 𝑛𝑛 𝑛 𝑛� . Then:

𝑛� − 1 𝑛 𝑘𝑛�𝑘� − 1 𝑛 𝑛𝑛� − 1𝑥 (1)

The number 𝑛𝑛� − 1 has a factorization which is
easy to anticipate:

𝑛𝑛�−1 𝑛 𝑘𝑛𝑛−1𝑘 �𝑛𝑛��� 𝑛 𝑛𝑛��� 𝑛 𝑛𝑛��� 𝑛 � 𝑛 𝑛𝑛 𝑛 1� 𝑥
(2)

(This comes from observing that
𝑛𝑛� − 1 𝑛 𝑘𝑛𝑛 − 1𝑘𝑘𝑛𝑛 𝑛 1𝑘,
𝑛𝑛� − 1 𝑛 𝑘𝑛𝑛 − 1𝑘 �𝑛𝑛� 𝑛 𝑛𝑛 𝑛 1�, etc.)
Both factors in the factorization (2) exceed 1; for,
the smaller of the two factors is 𝑛𝑛 − 1, and
𝑛𝑛 − 1 𝑛 𝑛� − 1which exceeds 1 since 𝑛𝑛 exceeds 1.
Hence 𝑛𝑛� − 1 is not prime, i.e., 𝑛� − 1 is not prime.
Note what has happened: by supposing that 𝑛𝑛 is
composite, it has turned out that 𝑛� − 1 is
composite as well. But this means that possibility
(B) has been falsi�ied; it cannot occur. Hence it is
possibility (A) which must occur. Therefore, if
𝑛� − 1 is prime, it must be that 𝑛𝑛 itself is prime.
Do you see why this proof is called ‘indirect’?
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Example 5. Prove: “If a triangle has two equal
angles, then the sides opposite to the equal angles
are equal.” Stated otherwise: “In △𝐴𝐴𝐴𝐴𝐴𝐴, if
∠𝐴𝐴 𝐵 ∠𝐴𝐴, then 𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴.”
Proof: First, some background. This problem is
Theorem I.6 in The Elements; it comes just after
I.5: “In an isosceles triangle, the angles opposite
the equal sides are equal.” (Or: “In △𝐴𝐴𝐴𝐴𝐴𝐴, if
𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴, then ∠𝐴𝐴 𝐵 ∠𝐴𝐴.”) At this point in the text,
the only congruence result available is “SAS
congruence” (I.4): “If two sides of one triangle are
equal, respectively, to two sides of another
triangle, and the angles included by the two pairs
of sides are equal, then the two triangles are
congruent to each other.” (The fact that the angle
is ‘included’between the two sides is crucial.)
Euclid uses it to prove I.5 as shown in Figure 1.
If we attempt to prove Theorem I.6 the same way,
we run into a dif�iculty. Try it out for yourself! �ou
will �ind that no matter where we locate 𝐷𝐷 on 𝐴𝐴𝐴𝐴
(possibilities: foot of internal bisector of angle
𝐴𝐴𝐴𝐴𝐴𝐴; midpoint of 𝐴𝐴𝐴𝐴; foot of perpendicular from
𝐴𝐴 to 𝐴𝐴𝐴𝐴), we are unable, using SAS congruence, to
show that △𝐴𝐴𝐴𝐴𝐷𝐷 𝐴 △𝐴𝐴𝐴𝐴𝐷𝐷. In each case, we �ind
that ‘SAS’ fails to apply; either the sides are wrong,
or the angle itself is wrong.

Given: 𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴. Draw 𝐴𝐴𝐷𝐷 to bisect ∠𝐴𝐴𝐴𝐴𝐴𝐴. Now
compare △𝐴𝐴𝐴𝐴𝐷𝐷 and △𝐴𝐴𝐴𝐴𝐷𝐷.
SAS congruence applies: 𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐷𝐷 is a shared
side, and ∠𝐴𝐴𝐴𝐴𝐷𝐷 𝐵 ∠𝐴𝐴𝐴𝐴𝐷𝐷. Hence △𝐴𝐴𝐴𝐴𝐷𝐷 𝐴 △𝐴𝐴𝐴𝐴𝐷𝐷,
and ∠𝐴𝐴 𝐵 ∠𝐴𝐴.

Given: ∠𝐴𝐴𝐴𝐴𝐴𝐴 𝐵 ∠𝐴𝐴𝐴𝐴𝐴𝐴. Suppose 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. Locate
𝐷𝐷 on 𝐴𝐴𝐴𝐴 such that 𝐷𝐷𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴. Now compare △𝐷𝐷𝐴𝐴𝐴𝐴
and △𝐴𝐴𝐴𝐴𝐴𝐴.
SAS congruence applies: 𝐷𝐷𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴, and
∠𝐷𝐷𝐴𝐴𝐴𝐴 𝐵 ∠𝐴𝐴𝐴𝐴𝐴𝐴. Hence △𝐷𝐷𝐴𝐴𝐴𝐴 𝐴 △𝐴𝐴𝐴𝐴𝐴𝐴. But this is
absurd!
So Euclid uses a different strategy, and it is very
ingenious. He asks, “Suppose that what is to be
proved is not true (i.e., the sides are not equal).
What happens then?” Now the possibility that
𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴 can be subdivided into two possibilities:
𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. If we can show that both
these are not possible (or “absurd” to use Euclid's
words), then the desired conclusion would follow
(𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴). To carry out this aim, Euclid assumes
that 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, argues as in Figure 2, and arrives at
the conclusion that △𝐷𝐷𝐴𝐴𝐴𝐴 𝐴 △𝐴𝐴𝐴𝐴𝐴𝐴. But this is
absurd, since △𝐷𝐷𝐴𝐴𝐴𝐴 is contained within △𝐴𝐴𝐴𝐴𝐴𝐴,
and the part cannot be equal to the whole. The
absurd conclusion came about because of what
we had assumed: 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴. If we had assumed
instead that 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, a similar absurdity would
follow. So neither of these assumptions can be
made. But then the only possibility left is
𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴. And this is just what we wanted to
show.
Note the indirectness of the strategy. The direct
approach was found to be infeasible, so Euclid
adopts the indirect route. His proof is an example
of proof by contradiction.
Closing remark. When you see indirect proof for
the �irst time in a mathematics class, you may get
the impression that it is a form of reasoning
peculiar to mathematics. But in fact we employ
this kind of reasoning routinely in daily life,
without realizing it. When you read a crime
thriller and encounter the word ‘alibi’, you are
dealing with just this form of reasoning! Here's
how this happens. Say a crime has occurred in
some house, and the police have pinpointed the
time of the crime: it happened at 11 pm. The chief
suspect for the crime is Mr. X. But the hopes of the
police to lay the blame on Mr. X are dashed when
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instead that 𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, a similar absurdity would
follow. So neither of these assumptions can be
made. But then the only possibility left is
𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴. And this is just what we wanted to
show.
Note the indirectness of the strategy. The direct
approach was found to be infeasible, so Euclid
adopts the indirect route. His proof is an example
of proof by contradiction.
Closing remark. When you see indirect proof for
the �irst time in a mathematics class, you may get
the impression that it is a form of reasoning
peculiar to mathematics. But in fact we employ
this kind of reasoning routinely in daily life,
without realizing it. When you read a crime
thriller and encounter the word ‘alibi’, you are
dealing with just this form of reasoning! Here's
how this happens. Say a crime has occurred in
some house, and the police have pinpointed the
time of the crime: it happened at 11 pm. The chief
suspect for the crime is Mr. X. But the hopes of the
police to lay the blame on Mr. X are dashed when

5
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he produces an alibi: he can show that at 11 pm
that night he was in some other city. The police
case that X is the culprit now crumbles, as follows.
Claim. X is not guilty. Proof. Suppose not; i.e.,
suppose that X committed the crime. But then he
must have been at the scene of the crime at 11 pm.
On the other hand, he was in some other city at
exactly that time; that‘s what his alibi is all about!
So we reach a contradictory state of affairs. (We
assume that X does not belong to the league of ‘X

Men’and has not yet mastered the art of being in
two places at the same time.) Consequently we
must give up the assumption made at the
beginning, about X being guilty. Hence, Mr. X is
not guilty!
Note the laborious way in which we wrote out the
argument. In actuality, such reasoning happens in
a �lash, and we are not even aware that we have
thought it out in this way.

6

A date-of-birth computation

Example

Say you were born on day d of month m in year y. Here d is a number between 1 and 31, m is a number 
between 1 and 12, and y is a number between 0 and 99 (inclusive in each case).

For example, if the date of birth is 15 August 1947, then d = 15, m = 8, y = 47. We now do some 
arithmetical operations on d, m, y as described below.

1. Write down d.
2. Multiply by 4. Add 13. Multiply by 25.
3. Subtract 200. Add m.
4. Multiply by 2. Subtract 40. Multiply by 50.
5. Add y.
6. Subtract 10,500.

The result should be a number giving your birth day, month and last two digits of the year in which you 
were born.

Suppose your birthdate happens to be 15 August 1947, or 15-08-47. Here is how the computations go, 
starting with d = 15:

• 15 → 15 x 4 = 60 → 60 + 13 = 73 → 73 x 25 = 1825

• 1825 → 1825 – 200 = 1625 → 1625 + 08 = 1633

• 1633 → 1633 x 2 = 3266 → 3266 – 40 = 3226 → 3226 x 50 = 161300

• 161300 → 161300 + 47 = 161347 → 161347 – 10500 = 150847

The number obtained at the end is 150847, or 15-08-47.

Why does this work? Find an explanation!


