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Prime numbers
On the vast canvas of numbers there is one special category, the 
prime numbers (or just ‘primes’), which have been a source of interest 
to mathematicians since ancient times. Not only do they display 
very beautiful and surprising properties, they also �ind unexpected 
application in �ields like coding and cryptography. 

Early in our encounter with numbers, we discover that there are 
in�initely many of them, meaning that their supply can never be 
exhausted. For, no matter how large the number that we name, we can 
produce a larger one by adding 1 to it.

There are Infinitely 
many Primes – I
But how many proofs of this?
Numbers have been a subject of fascination from the most ancient times, and people 

keep coming up with families of numbers: integers, rational numbers, numbers, real 

numbers, complex numbers, prime numbers, Fermat numbers, Bernoulli numbers, . . . . 

Mathematics teacher D R Kaprekar (1905–1985) found many new families, giving them 

curious names like Dattatreya numbers, Demlo numbers, monkey numbers, and so on. 

India’s great mathematician S Ramanujan who made a large number of discoveries 

in number theory found a new family of numbers which he called ‘highly composite 

numbers’. Back in the Greek era, Pythagoras, steeped in mysticism, referred to numbers 

as sacred, lucky, evil and so on. (Sacred numbers are difficult to find these days. But 13 

continues to be unlucky!) For the rest of this article, when we use the word ‘number’ we 

mean natural number or positive integer, i.e., one of the numbers 1,2,3,4,5,  . . . . .

V G T������

Musing on the primes
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A number 𝑛𝑛 exceeding 1 is said to be prime if it
has no divisors among the set of natural numbers,
other than 1 and itself. If 𝑛𝑛 does have divisors
other than 1 and 𝑛𝑛 it is called composite. Note that
the number 1 does not get classi�ied by these two
de�initions. We call 1 a unit; it is neither prime
nor composite. So the primes are these numbers:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, … ,

and the composites are:

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, … .

After 2, every even number is composite, so we
cannot �ind stretches of consecutive numbers
which are all prime. But we do seem to �ind long
stretches of consecutive numbers which are all
composite. For example, 14, 15, 16 is a stretch of
three such numbers, and 24, 25, 26, 27, 28 is a
stretch of �ive composites. Here is a stretch of
seven composites: 90, 91, 92, 93, 94, 95, 96 . Can
we �ind even longer stretches of composites? Can
we, say, �ind a billion consecutive numbers, all
composite? The surprising answer is: Yes!

Here is a simple argument showing why. Let 𝑛𝑛 be
any number, 𝑛𝑛 𝑛 1. Consider the following 𝑛𝑛 𝑛 1
consecutive numbers de�ined using the factorial
function (recall that 𝑛𝑛𝑛 is the product
1 × 2 × 3 ×⋯ × (𝑛𝑛 𝑛 1𝑛 × 𝑛𝑛):

𝑛𝑛𝑛𝑛2, 𝑛𝑛𝑛𝑛3, 𝑛𝑛𝑛𝑛4, 𝑛𝑛𝑛𝑛5, … , 𝑛𝑛𝑛𝑛(𝑛𝑛𝑛1𝑛, 𝑛𝑛𝑛𝑛𝑛𝑛.

These 𝑛𝑛 𝑛 1 numbers are all composite; for, 𝑛𝑛𝑛𝑛2
is a multiple of 2; 𝑛𝑛𝑛𝑛3 is a multiple of 3; …; 𝑛𝑛𝑛𝑛𝑛𝑛
is a multiple of 𝑛𝑛. (In general, 𝑛𝑛𝑛𝑛𝑛𝑛 is a multiple
of 𝑛𝑛 if 𝑛𝑛 lies between 2 and 𝑛𝑛.) So simply by
choosing 𝑛𝑛 to be extremely large, we can
construct very long stretches of consecutive
composite numbers. (Example: Take 𝑛𝑛 𝑛 6; we
get the following stretch of �ive consecutive
composites: 722, 723, 724, 725, 726.) This
establishes the claim.

Howmany primes are there?
There are obviously in�initely many composites
(indeed, every even number after 2 is composite),
but we cannot be so sure about the primes. For
one thing, they start to thin out! For example,
there are 168 primes between 1 and 1000; 135
primes between 1000 and 2000; 127 primes
between 2000 and 3000; …and 98 primes

between 20000 and 21000. The number is clearly
coming down, so we may wonder whether a point
will come, far down the number line, when they
vanish altogether.

This question was posed by the ancient Greeks,
and answered: they proved that there is no `last
prime'; in short, there are in�initely many primes.
The oldest proof known of this remarkable claim
is found in the great text written by Euclid, The
Elements. Since then many more proofs have been
found by famous mathematicians.

Euclid's proof
It is curious that Euclid's beautiful proof is found
in a book that is generally considered to be a text
in geometry! But in fact there are several topics in
this book which would nowadays be regarded as
part of number theory.

Euclid's proof is based on the principle of ‘proof
by contradiction’ . It starts by supposing that
what we wish to prove is false, then examines
what follows from this supposition—in the hope
of �inding something contrary. If such a
contradiction is found, it shows that what was
assumed at the start necessarily has to be false. In
other words, the statement we wish to prove
must be true. This strange-sounding strategy for
proof is a corner stone for the development of
modern mathematics. Let's see how Euclid
carries out this strategy.

Let the primes be 𝑝𝑝�, 𝑝𝑝�, 𝑝𝑝�, …; here 𝑝𝑝� 𝑛 2 is the
�irst prime, 𝑝𝑝� 𝑛 3 is the second prime, 𝑝𝑝� 𝑛 5 is
the third prime, and so on. Suppose there is a ‘last
prime’ 𝑝𝑝�. (This is precisely the supposition we
hope to demolish.) We now construct the
following number 𝑋𝑋 by adding 1 to the product of
all these primes:

𝑋𝑋 𝑛 𝑝𝑝�𝑝𝑝�𝑝𝑝� ⋯ 𝑝𝑝� 𝑛 1.

It should be clear that 𝑋𝑋 leaves remainder 1when
divided by 𝑝𝑝�. In fact it leaves remainder 1when
divided by each of the primes 𝑝𝑝�, 𝑝𝑝�, 𝑝𝑝�, … , 𝑝𝑝�.
This means, in particular, that: 𝑋𝑋 is not divisible by
any of the primes 𝑝𝑝�, 𝑝𝑝�, 𝑝𝑝�, … , 𝑝𝑝� .

What kind of number is 𝑋𝑋? It is either prime or
composite. If it is the former then we have a new
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prime number (𝑋𝑋 itself), different from
𝑝𝑝�, 𝑝𝑝�, 𝑝𝑝�, … , 𝑝𝑝�. If 𝑋𝑋 is not prime then it has a
prime divisor 𝑞𝑞 different from 𝑝𝑝�, 𝑝𝑝�, 𝑝𝑝�, … , 𝑝𝑝�. (It
cannot be any of these since 𝑋𝑋 is not divisible by
any of these primes.) Whichever possibility
happens, we obtain a prime number different from
𝑝𝑝�, 𝑝𝑝�, 𝑝𝑝�, … , 𝑝𝑝� . So {𝑝𝑝�, 𝑝𝑝�, 𝑝𝑝�, … , 𝑝𝑝�} cannot be the
complete set of primes. Hence there cannot be a
last prime number 𝑝𝑝�, and the number of primes
is in�inite.

We can try out this argument with some actual
numbers to see how it works.

• Imagine we thought that 3 is the last prime
number (!); then the set of primes is {2, 3},
and 𝑋𝑋 𝑋 𝑋2 𝑋 3𝑋 𝑋 𝑋 𝑋 𝑋. It happens that 𝑋
is prime, so we have found a new prime,
contrary to our supposition that 3 is the last
prime.

• Imagine we thought that 5 is the last prime
number; then the set of primes is {2, 3, 5},
and 𝑋𝑋 𝑋 𝑋2 𝑋 3 𝑋 5𝑋 𝑋 𝑋 𝑋 3𝑋. It happens
that 3𝑋 is prime, so we have found a new
prime, contrary to our supposition that 5 is
the last prime.

• Similarly, if we imagined 𝑋3 to be the last
prime number, so that the set of primes is
{2, 3, 5, 𝑋, 𝑋𝑋, 𝑋3}, then
𝑋𝑋 𝑋 𝑋2 𝑋 3 𝑋 5 𝑋 𝑋 𝑋 𝑋𝑋 𝑋 𝑋3𝑋 𝑋 𝑋 𝑋 3𝑋𝑋3𝑋.
It happens that 3𝑋𝑋3𝑋 is composite, and its
prime factorization is 3𝑋𝑋3𝑋 𝑋 59 𝑋 5𝑋9. So
we have found two new primes (59 and
5𝑋9), contrary to our supposition that 𝑋3 is
the last prime.

Notice how carefully Euclid has framed the
argument. He has never claimed that 𝑋𝑋 is prime,
only that a new prime will be found by this means
whether 𝑋𝑋 is prime or composite. The proof is
indeed a classic.

Variants of Euclid's proof
There are other proofs of the in�initude of primes
that closely resemble Euclid's proof but are not
the same (though they are clearly modelled on
Euclid's proof). We sketch a few here.

1. Instead of using the number

𝑋𝑋 𝑋 𝑝𝑝�𝑝𝑝�𝑝𝑝� ⋯𝑝𝑝� 𝑋 𝑋

we could as well work with the number
𝑌𝑌 𝑋 𝑝𝑝�𝑝𝑝�𝑝𝑝� ⋯𝑝𝑝� − 𝑋. We need 𝑛𝑛 𝑛 𝑋, to
avoid triviality. The rest of the proof is the
same as earlier.

• If 𝑛𝑛 𝑋 2we get 𝑌𝑌 𝑋 𝑋2 𝑋 3𝑋 − 𝑋 𝑋 5
which is prime.

• If 𝑛𝑛 𝑋 𝑛we get
𝑌𝑌 𝑋 𝑋2𝑋3𝑋5𝑋𝑋𝑋−𝑋 𝑋 2𝑋9 𝑋 𝑋𝑋𝑋𝑋9
which yields two new primes, 𝑋𝑋 and
𝑋9.

The same reasoning works in all cases; we
see that there must be a prime number
other than 𝑝𝑝�, 𝑝𝑝�, 𝑝𝑝�, … , 𝑝𝑝�.

2. We could also use the factorial function. If 𝐾𝐾
is the supposed largest prime we could
work with the number de�ined by
𝑍𝑍 𝑋 𝐾𝐾𝑍𝑋𝑋. Once again the same reasoning
works and yields new primes.

3. The following proof is due to the German
mathematician Ernst Kummer
(1810--1893), and it is a genuine proof by
contradiction. Suppose that 𝑝𝑝� is the last
prime and that {𝑝𝑝�, 𝑝𝑝�, 𝑝𝑝�, … , 𝑝𝑝�} is the
complete set of primes. As before we
construct the number 𝑋𝑋 𝑋 𝑝𝑝�𝑝𝑝�𝑝𝑝� ⋯𝑝𝑝� − 𝑋.
This number must have a prime divisor, and
the divisor must be one of the primes
𝑝𝑝�, 𝑝𝑝�, 𝑝𝑝�, … , 𝑝𝑝�, because we have supposed
that these are all the primes that exist.
Suppose that the prime divisor of 𝑋𝑋 thus
de�ined is 𝑝𝑝� .

Now, clearly, 𝑝𝑝� is a divisor of 𝑋𝑋 𝑋 𝑋 too
(since 𝑋𝑋 𝑋 𝑋 is the product of the primes
𝑝𝑝�, 𝑝𝑝�, … , 𝑝𝑝�). But if 𝑝𝑝� divides 𝑋𝑋 as well as
𝑋𝑋 𝑋 𝑋, then 𝑝𝑝� must divide the difference
between 𝑋𝑋 𝑋 𝑋 and 𝑋𝑋, which is 𝑋. This
however is absurd: no prime number can be
a divisor of 𝑋. So we have found the desired
contradiction, and the conclusion follows
that there are in�initely many primes.

(1)

(2)

(3)
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A presentation not based on ‘proof by
contradiction’
There is even a way of presenting Euclid's proof in
which we do not emphasize the contradictory
aspect; it would not be called a proof by
contradiction. We phrase it in a positive manner
by claiming that: �iven any �inite set 𝑆𝑆 of primes, it
is possible to �ind a prime number that is not in 𝑆𝑆.

The idea is exactly the same: we construct a
number 𝑁𝑁 which is 1more than the product of all
the numbers in 𝑆𝑆. Then 𝑁𝑁 is either a prime
number, or it has a prime divisor 𝑞𝑞. Either way we
obtain a new prime (𝑁𝑁 or 𝑞𝑞) which does not lie in
𝑆𝑆.

It is fairly obvious that all these are ‘children’ of
Euclid's proof.

Pólya's proof
In contrast, here is a proof which is genuinely
different. It is due to the great mathematician
educator George Pólya (Christian Goldbach had
had exactly the same idea), and it uses the Fermat
numbers 𝐹𝐹� de�ined by:

𝐹𝐹� = 2�� + 1.

For example we have: 𝐹𝐹� = 2� + 1 = 3;
𝐹𝐹� = 2� + 1 = 5; and following these:

𝐹𝐹� = 2� + 1 = 17,
𝐹𝐹� = 2� + 1 = 257,
𝐹𝐹� = 2�� + 1 = 65537.

The �ive numbers listed are all primes, but that
should not fool us, for the very next Fermat
number is not prime:

𝐹𝐹� = 2�� + 1 = 4294967297 = 641 × 6700417.

Pólya observed that these numbers have the
following very nice property:

The Fermat numbers are mutually
coprime: gcd(𝐹𝐹�, 𝐹𝐹�) = 1 for all
𝑚𝑚 𝑚 𝑚𝑚.

This follows from the fact that the Fermat
numbers are all odd (which is obvious), and they
obey the following identity for all 𝑚𝑚 𝑛 1:

𝐹𝐹� − 2 = 𝐹𝐹� × 𝐹𝐹� × 𝐹𝐹� × ⋯ × 𝐹𝐹���.

For example, take 𝑚𝑚 = 3; we have
255 = 3 × 5 × 17. We shall leave the proof of the
identity as an exercise, as also the proof of
coprimeness of the Fermat numbers.

Taking the claim as proved for now, we show how
it implies that there are in�initely many primes.
Each Fermat number has associated with it its
own set of prime divisors. These sets must all be
disjoint (this is what ‘coprime’ implies). So for
each number 𝑚𝑚 we have a non-empty set of
primes corresponding to 𝑚𝑚. Taking the union of
these sets, we see that there must be in�initely
many primes. Note that this is not a proof by
contradiction.

Exercises

1. Prove the relation ���� � �� × �� × �� × � × ���� for the Fermat numbers. Hint: Use the principle of induction.

2. Show how the above relation, together with the fact that the Fermat numbers are odd, implies that these numbers
are mutually coprime. Hint: Suppose some prime � divides both �� and �� where� � �. Using the above identity
show that �must divide �. But this is absurd, since �must be odd.
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Exercises
(1) Prove the relation Fn−2 = F0 × F1 × F2 × ��� × Fn−1 for the Fermat numbers. Hint: Use the principle of induction.

(2) Show how the above relation, together with the fact that the Fermat numbers are odd, implies that these numbers are 
mutually coprime. Hint: Suppose some prime p divides both Fm and Fn where m > n. Using the above identity show that 
p must divide 2. But this is absurd, since p must be odd.
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