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Introduction
The French mathematician Pierre de Fermat (1601–1665) was a 
veritable giant of number theory whose discoveries, and especially, 
whose conjectures and unproven assertions, kept mathematicians 
hard at work for several centuries that followed. Indeed, the �irst 
two issues of this magazine both featured his work: the �irst issue 
reviewed a book ([1]) on the history of what is known as “Fermat’s 
Last Theorem,” while the second issue, in an article on the four 
squares theorem ([2]), describes Fermat’s work on primes that are 
representable as sums of two squares.
Besides these two well known contributions, Fermat is known for a 
whole host of other theorems in mathematics. He was a lawyer by 
training, but his passion was mathematics. He shone in arithmetic 
(which in its more advanced form is what we call number 
theory today), but made seminal contributions in other parts of 
mathematics as well, and even in physics. 

Fermat Numbers
A false conjecture leading to fun and fascination

Interspersed with historical and biographical details, this article has rich 

nuggets of information. These don’t just exercise a student’s understanding of 

exponents, they also provide solvable proofs for school students. Best of all, the 

article weaves random results into a coherent whole, giving direction to ideas, 

conjectures and proofs.
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Great mathematicians, and Fermat was squarely
in that league, are characterized by deep intuition
that enables them to see mathematical truths that
others are not yet able to see. But great
mathematicians are also human, and occasionally,
they are wrong. Fermat himself was wrong on at
least one mathematical matter: the issue of
whether numbers of the form 2�� + 1 are prime.
These numbers are the subject of this article.

Recall �irst the convention when interpreting
numbers written with repeated exponents:
2�� + 1 is to be interpreted as 2(��) + 1 (and not
(2�)� + 1). Let us write 𝐹𝐹� for the number
2�� + 1, so that 𝐹𝐹� = 2�� + 1 = 2� +1 = 3, 𝐹𝐹� = 5,
𝐹𝐹� = 17, etc. Fermat claimed that the numbers 𝐹𝐹�
are prime for all integers 𝑛𝑛 = 1𝑛 2𝑛 𝑛 . In fact, he
�irst claimed to have a proof, but later discovered
an error in it ([3, Foreward]). However, he
appeared to still believe in the truth of his claim.
It is thus fair to rename his claim as a conjecture.

Indeed, 𝐹𝐹�, 𝐹𝐹�, and 𝐹𝐹� above are clearly prime. So
is 𝐹𝐹� = 2� + 1 = 257 and 𝐹𝐹� = 2�� + 1 = 65537.
But there the list is broken! Euler, who lived
approximately a century after Fermat
(1707–1783) showed that 𝐹𝐹�, a ten-digit integer,
is not prime: it is divisible by 641. Thus, Fermat's
conjecture on the numbers 2�� + 1was false!

But there is another characterization of great
mathematicians that is relevant here—the very
objects they think about turn out to be fascinating
and deep, even if these mathematicians
occasionally make false assertions about them!
Such is indeed the case with numbers of the form
2�� + 1, now appropriately called Fermat
Numbers. (Numbers of the form 2�� + 1 that are
prime are now referred to as Fermat primes.)
Fermat numbers have many charming properties,
and have turned out to have intriguing
connections to other parts of mathematics, as well
as to computer science.
�dentities and t�e in�initude of primes
Let us start with some pretty identities that
Fermat numbers satisfy. Their proofs are fun
exercises for high school students, involving
nothing more than simple algebra and induction.

1. 𝐹𝐹� = (𝐹𝐹��� − 1)� + 1, for 𝑛𝑛 𝑛 1.

2. 𝐹𝐹� = 𝐹𝐹� ×𝐹𝐹� ×𝐹𝐹� ×⋯×𝐹𝐹��� +2, for 𝑛𝑛 𝑛 1.

3. 𝐹𝐹� = 2���� ⋅ 𝐹𝐹� ⋅ 𝐹𝐹� ⋅ 𝐹𝐹� ⋅ ⋯ ⋅ 𝐹𝐹��� + 𝐹𝐹���, for
𝑛𝑛 𝑛 2.

4. 𝐹𝐹� = 𝐹𝐹�
��� − 2(𝐹𝐹��� − 1)�, for 𝑛𝑛 𝑛 2.

We will prove the �irst one here: Note that
2�� = 2������ = 2����⋅� = (2����)� = (𝐹𝐹��� − 1)�.
Adding one everywhere, we �ind
𝐹𝐹� = 2�� + 1 = (𝐹𝐹��� − 1)� + 1, as desired.
There is an immediate consequence of the second
identity above: the last digit of every Fermat
number (for 𝑛𝑛 𝑛 2) must be 7. This is because for
𝑛𝑛 𝑛 2, we have
𝐹𝐹� = 3⋅5⋅𝐹𝐹� ⋅ ⋯ ⋅𝐹𝐹���+2 = 5(3⋅𝐹𝐹� ⋅ ⋯ ⋅𝐹𝐹���)+2.
So 𝐹𝐹� is of the form 2 plus an odd multiple of 5
and hence has last digit 7. Pretty!
The second consequence is that the Fermat
numbers are pairwise relatively prime; that is, for
distinct non-negative integers 𝑖𝑖 and 𝑗𝑗,
gcd(𝐹𝐹�𝑛 𝐹𝐹�) = 1. This is attributed to Christian
Goldbach (who is well known for a conjecture that
is as yet unproven: Every even integer greater
than 2 is expressible as a sum of two primes). As
noted in a companion article in this issue, There
are �n�initel� man� �rimes, this property leads to
another proof of the in�initude of primes.

Fermat numbers and constructibility of
polygons
Recall the problems of constructibility handed to
us by the Greeks: using only straight-edge and
compass, construct line segments of speci�ied
lengths, and angles of speci�ied measures. It was
an open problem for a very long time, for
instance, (i) whether one could trisect an
arbitrary angle using straight-edge or compass,
(ii) whether one could “square the circle,” that is,
construct the side of a square whose area is that
of a given circle, and (iii) whether one could
“double the cube,” that is, construct the side of a
cube whose volume is twice that of a given cube.
These problems are easy to solve once one has at
one's command techniques from Field Theory
(known earlier as the ‘Theory of Equations’); but
this theory was not known to the Greeks. We now
know that the answer all three questions is: No!

A speci�ic problem in this context was the
constructibility of regular 𝑛𝑛-gons for various
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values of 𝑛𝑛. Thus, a regular 3-gon is an equilateral
triangle, a regular 4-gon is a square, a regular
5-gon is a regular pentagon, and so on. Whether a
regular 𝑛𝑛-gon can be constructed using a
straight-edge and compass quickly reduces to the
question of whether the angle 360∘/𝑛𝑛 can be
constructed using straight-edge and compass.

This problem was investigated by the Great
Master, Carl Friedrich Gauss. (Gauss ranks among
the greatest mathematicians ever, when
measured not just by his own productivity but by
the new areas of mathematics he initiated; his
results to this date are a source of joy and wonder.
His in�luence on mathematics and indeed all
sciences ranks with that of Newton.) Gauss
showed that the regular 17-gon is constructible
(note that 17 is 𝐹𝐹�), and went on to show that a
regular 𝑛𝑛-gon (𝑛𝑛 𝑛 3) can be constructed if the
prime factorization of 𝑛𝑛 is of the form
2�𝑝𝑝�𝑝𝑝� ⋯𝑝𝑝� , where the 𝑝𝑝� are distinct primes of
the form 2�� + 1; Fermat numbers again! This is
an instance of how questions about objects
considered by great mathematicians (in this case
Fermat) can turn out to have deep signi�icance in
mathematics, far from apparent at �irst. Thus, the
question of whether for a given 𝑘𝑘 the 𝑘𝑘th Fermat
number 2�� + 1 is prime turns out to be more
than just a curiosity: it is vitally connected to
whether an 𝑛𝑛-gon can be constructed.

The reason why a regular 𝑛𝑛-gon with the stated
prime factorization of 𝑛𝑛 is constructible, lies in
Field Theory. For the case where 𝑛𝑛 is a
prime—call it 𝑝𝑝 instead—the theory tells us that
the regular 𝑝𝑝-gon is constructible if and only if
𝑝𝑝 𝑝 1 is a power of 2. Thus, a regular 𝑝𝑝-gon is
constructible if and only if 𝑝𝑝 𝑝 2� + 1 for some
integer 𝑘𝑘.

Now one can see quite easily that 2� +1 cannot be
prime unless 𝑘𝑘 is itself a power of 2. For, suppose
𝑘𝑘 𝑝 2�𝑏𝑏 for some odd integer 𝑏𝑏 𝑏 1. Then

2� + 1 𝑝 2��� + 1 𝑝 (2��)� + 1.

Now it is a fact (it can be proven as a high school
exercise) that 𝑥𝑥� + 1 is divisible by 𝑥𝑥 + 1 if 𝑏𝑏 is
odd. Hence if 𝑏𝑏 𝑏 1, 𝑝𝑝 𝑝 (2��)� + 1would have
the strictly smaller divisor 2�� + 1, contradicting
the fact that 𝑝𝑝 is prime. Hence, the condition from

Field Theory becomes: for prime 𝑝𝑝 𝑛 3, a regular
𝑝𝑝-gon is constructible if and only if 𝑝𝑝 is a Fermat
prime!

The condition for the constructibility of a regular
𝑛𝑛-gon for a general 𝑛𝑛 follows from the condition
just described for the case where 𝑛𝑛 is prime, using
standard reductions also furnished by Field
Theory. Indeed, the condition for a general 𝑛𝑛-gon
is also an if and only if statement: a regular 𝑛𝑛-gon
is constructible if and only if 𝑛𝑛 is of the form
described by Gauss. Gauss proved the ‘if ’ part of
the condition, but his proof of the ‘only if ’ part had
a gap that was �illed only later ([�, Chap. ��]).

Primality of the Fermat numbers
Let us turn to the original conjecture of Fermat,
that the numbers 2�� + 1 are prime for all
𝑛𝑛 𝑝 0𝑛 1𝑛 𝑛 . We know, thanks to Euler, that while
𝐹𝐹� through 𝐹𝐹� are prime, 𝐹𝐹� is not. For what other
values of 𝑛𝑛 is 𝐹𝐹� known to be prime? The answer,
more than three hundred and �ifty years after
Fermat made his �irst conjecture, is: None!

That does not mean that no 𝐹𝐹� is prime for 𝑛𝑛 𝑛 5.
All it means is that no one has as yet found a
prime 𝐹𝐹� for 𝑛𝑛 𝑛 6. What has been established
are many results in the opposite direction (similar
to the case of 𝐹𝐹�): the numbers 𝐹𝐹� through 𝐹𝐹��
have all been shown to be composite ([4]).
Besides these, 𝐹𝐹� is known to be composite for
other sporadic values of 𝑛𝑛, such as
𝑛𝑛 𝑝 36𝑛 71𝑛 𝑛𝑛𝑛 517𝑛 205𝑛𝑛 63𝑛0𝑛 1774𝑛, to select
just a sample ([4]).

What makes determination of the primality of 𝐹𝐹�
so dif�icult is that, thanks to the presence of the
double exponent, the number of digits in 𝐹𝐹�
grows very rapidly as 𝑛𝑛 becomes large. In fact,
Exercise (2) shows that the growth in the number
of digits is exponential.

On the other hand, there is a very pretty result on
the possible prime factors of 𝐹𝐹�: Euler showed
that any prime that divides 𝐹𝐹� must be of the
form 𝑘𝑘 𝑘 2��� + 1, for some positive integer 𝑘𝑘.
(The proof of this itself involves another famous
theorem of Fermat known as Fermat's Little
Theorem: for any prime 𝑝𝑝 and any integer 𝑎𝑎, the
number 𝑎𝑎� 𝑝 𝑎𝑎 is divisible by 𝑝𝑝.) Euler's result
was further sharpened by Lucas, who showed



FIGURE 1. Stamp commemorating the 400th birth
anniversary of Fermat; perhaps one day there will be
another stamp depicting the next Fermat prime after
��? Source for image: [8] and [9]

that the 𝑘𝑘 in Euler's result must be even. Thus we
have Lucas's result that any prime divisor of 𝐹𝐹�
must be of the form 𝑙𝑙 𝑙 𝑙��� + 1 for some positive
integer 𝑙𝑙. This result is the basis of certain
attempts at showing 𝐹𝐹� is prime for various 𝑛𝑛:
run through all possible integers of the form
𝑙𝑙 𝑙 𝑙��� + 1 that are less than�𝐹𝐹� and check if
they divide 𝐹𝐹�. Though easy to state, the
computational power required to perform these
calculations, even allowing for various tricks used
to speed up the process, is stupendous for large 𝑛𝑛,

because the numbers 𝐹𝐹� are so large. There are
distributed searches currently taking place over
the internet: various groups of people fascinated
by Fermat primes collectively divide the work
among themselves by looking for divisors in
restricted ranges of 𝑙𝑙 (see [5]). Anybody with a
computer and access to the internet can join these
searches: we encourage the reader to do so too!

Further readings and exercises
We have only touched on some aspects of Fermat
numbers: there are many more charming features
of these numbers, and many more connections
with other parts of mathematics and computer
science that we have not described. A wonderful
reference for Fermat numbers is [3] (note the pun
in its title!). Although quite advanced for a high
school student, it conveys the fun and the
fascination of these numbers, and students will
pro�it by simply thumbing through the book. We
also recommend the Wikipedia article ([6]) for
another overview of some features of these
numbers, as well as the MacTutor ([7]) biography
of Fermat.

We end with some more exercises that can be
tackled by high school students.

Exercises

(1) Prove Identities (3) and (4) in Section . (Hint: Use Identities (1) and (2).)

(2) Show that the number of digits in 𝐹𝐹� is approximately ⌊𝑙� log��(𝑙) + 1⌋ (here, ⌊𝑥𝑥⌋ denotes the
greatest integer less than or equal to 𝑥𝑥).

(3) Show that for 𝑛𝑛 𝑛 1, 𝐹𝐹� is of the form 6𝑘𝑘 𝑘 1 for some integer 𝑘𝑘. (Hint: �ou may �ind Identity (2) in

(4) Show that no 𝐹𝐹� (𝑛𝑛 𝑛 𝑙) is a sum of two primes. (Hint: If it were, then one prime would have to be
𝑙.)

(5) Show that every 𝐹𝐹� is the difference of two square integers. (Hint: Show that every odd integer is
the difference of two squares.)

(6) Using Euler's theorem on the possible prime factors of 𝐹𝐹�, show that no 𝐹𝐹� is a perfect square.
(Hint: assume that 𝐹𝐹� is a perfect square. First show that if integers 𝑎𝑎 and 𝑏𝑏 both leave a remainder
of 1when divided by a certain integer𝑚𝑚, then so does the integer 𝑎𝑎𝑏𝑏. Now combine this results
with Euler's description of the possible prime factors of 𝐹𝐹� to describe�𝐹𝐹�.)
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of 1when divided by a certain integer𝑚𝑚, then so does the integer 𝑎𝑎𝑏𝑏. Now combine this results
with Euler's description of the possible prime factors of 𝐹𝐹� to describe�𝐹𝐹�.

Figure 1.
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