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The exploratory activities in this article include the following:

1. Paper-folding as mentioned above to get the envelopes - the process of paper-folding and the related
geometry are a sheer joy!

Pondering over the exact points in each fold-line (or tangent to the curve) that generated it.

Of Paper-folding,
Geogebra and

[ J . . .
‘ P t I I Generating the ellipse through paper-folding
o n I C S a r On a sheet of paper, draw a circle and mark its centre C and circumference L. Cut out the circle and mark a

point P within the circle. Select a point Qon L and fold the paper so that Q coincides with P. Make a sharp
crease along the fold. Now select another point Q' near Q and repeat the process. Shift the paper slightly
each time to get a new point Q' on L and repeat the folding process. Note that each crease (fold line)
obtained is a chord of the circle. See Figure 1.

Verification using GeoGebra, plotting the actual conic and observing its formula.

Exploring the properties of the conic under consideration.

S

Deriving the formula for this conic.

In the article Of Paper-folding, Geogebra and Conics which appeared in
the Tech Space section of the July 2015 issue we had discussed the
method of generating a parabola, firstly through paper-folding and then
on Geogebra, a dynamic geometry software. Both methods helped us to
understand and explore the various properties of a parabola. In this
article we shall describe the construction of the ellipse and the hyperbola
using a similar strategy of paper-folding followed by a Geogebra
exploration. The reader may consider the previous article as a
pre-requisite to this one.

SWATI SIRCAR

a family of lines which have specific properties. These
lines which trace out the conic may be referred to as the
envelope of the required conic.

l et us recall, that the conics can be obtained by folding

By studying the way the folds are made, we can derive the
equation of the conic. This repeated folding, as a point varies
along a line (or a circle), is a simple low cost way of generating a
locus without resorting to technology. It enables the student to
get a glimpse of how a curve can be generated dynamically. We
then replicate this process on GeoGebra - what is interesting is
how we ‘algorithmise’ the paper-folding instruction in order to
get the desired output on the computer.

Figure 1.

The emerging shape, which is an ellipse, is clearly visible in Figure 2.
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Figure 2.

Observe that the first fold line (shown in green in Figure 2) is the perpendicular bisector of PQ. As the
position of Q changes on L, new fold lines are generated and these are tangents to the curve. Let us pick
any point Q on L and draw the corresponding fold line. Let us mark the point of intersection of CQ with the
fold line as Q;.

The curve is the locus of Q; as Q varies along L!

Why is this?
The ellipse is defined as the locus of all points the sum of whose distances from two given points is a
constant. These two given points are called the foci of the ellipse.

Now, Q;P = Q;Q by symmetry, therefore CQ; + QP = CQ; + Q;Q = CQ, i.e. radius of the given circle,
which is a constant, independent of Q. So the elliptical curve is the locus of Q, as Q varies along L with C
and P as its foci!

The ellipse has two axes or lines of symmetry. These are the major axis and minor axis (indicated as A, A,
and B; B, respectively in Figure 3). These may be obtained as follows:

Join CP and extend it to cut the circle at A;q and A,q. This line meets the ellipse in A; and A,, (as shown in
figure 3 and these are referred to as the vertices or end points of the ellipse. Note that A;and A,are
respectively the mid-points of PA;, and PA,. To find the endpoints B; and B, of the ellipse, we use the
fact that at B; and B,, the tangents are parallel to CP. Through P, draw a line perpendicular to CP and
cutting the circle at points By and B,q. In the triangle B;4CP, the perpendicular bisector of B;(P (the fold
line or tangent) is parallel to the base CP and hence passes through the mid-point of CB;,. Hence the
vertices at the ends of the minor axes are the mid-points By, B, of CB;¢ and CB,,. Having got the four
vertices of the ellipse (see Figure 3), we can now map the arcs A;B;, B;A,, A,B, and B,A; on the ellipse
which correspond to points on the four arcs of L. Note how B;yA5q is much shorter than A;(B,q even
though B; A, and A, B, are of the same length.
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Figure 3.

Let us now derive the equation of the ellipse. Take the origin to be the centre of the ellipse i.e., the midpoint
of CP. Then C = (—a,0) and P = (a, 0) for some a > 0. Let r be the radius of the circle; note thatr > 2a.

The equation of the circle is (x + a)? + y? = r2.
Let the coordinates of Q be (u, v). This gives

u+a)+vi=r? (1
Note that A; = (r/2,0) as it is the mid-point of A1 (r — @, 0) and P(a, 0). Similarly, A, = (-7/2,0),

Since OB, is /> PByq, and CP = 2a, CByq = 7, 0B, = 1/2V(r? — 4a?)), so By is the point
(0,1/2 V(r? — 4a?)). Similarly B, is the point (0, —1/2 V(r? — 4a?)).

Leta =r/2and B = 1/2 V(r? — 4a?) = r? = 4a? and 42 = r? — 4a?
- Al = (a! 0)' AZ = (_a! 0)' Bl = (O'ﬁ) and B2 = (0! _ﬁ)

We next calculate the equation of the fold line using (i) the midpoint of PQ, (ii) slope of PQ and (iii)
relation between the slopes of two perpendicular lines.

- v_a—ux( u+a) )
y-3=— x > (2)

Also, the equation of CQ is:
y:u+ax(x+a) 3)

We now use (1), (2) and (3) to get
y x+a  r?—4a? B 2p?
v u+a 2w?+u?-a?) v2+4+u?-—a?

4)
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2p%*v y 2Bv
y=v2+u2—a2=>E=v2+u2—a2 )
and 2 2 2 2 2
u+a)lrc—4a 2a°u — 2aca 2a“(u—a X 2a(u—a
ran QG g RN S 1O N,
2(v? +u? —a?) v2+u?—a? vi4+u?-a? a vit+ul-a?

In order to eliminate x and y, from (5) and (6)

(f)z N <X>2 _ 4a? (u — a)° + 4B%v?

a B (u2 + v2 — a?)*

Now
4a%(u — a)? + 4p%v? = r?(u — a)? + (r* — 4a®)v?
= (A + B)? — 4AB where A = u? + v? and B = a?
= (A-B)? = (u? + v? — a?)?

x\? y 2
=(2)+ (E) =1
The complete derivation is available on http://teachersofindia.org/en/periodicals/at-right-angles

Working with GeoGebra

Dynamic Geometry Software such as GeoGebra proves invaluable for mathematical investigations. (It is
available from http://www.geogebra.org/download.) While most students are very comfortable with
hands-on activities, the tedium of repeated and careful folding is eliminated with the use of technology.
Patterns emerge faster and can easily be viewed with the help of the ‘Trace’ button and the judicious use
of colour. This enables the student to focus on the mathematics of the investigation rather than the
technicalities of the activity. The activity being studied here assumes that the reader has familiarity with
the main features of Geogebra. To convert the activity into a Geogebra exploration and to select the
appropriate commands, the student needs to ask the following questions:

1. What is the outcome?

2. What is the mathematical aspect to this physical activity?

3. How can I give this command?

For example, in order to replicate the steps "Next, select a point on L, fold that point to P, and crease the
paper along the fold............ ” the student should arrive at the following answers:

1. What is the outcome? The point on L should coincide with P.

2. What is the mathematical aspect to this physical activity? P should be the reflection of the point on L.

3. How can I give this command? The crease on the paper is the mirror for the reflection of the point
on L so that it coincides with P. So the crease is the perpendicular bisector of the line joining the
pointon L to P.

In GeoGebra, the point Q can be easily moved on L with the use of the arrow key. Further, the use of sliders
allows the student to observe changes in the ellipse as the radius of the circle and the distance between
the two points change.

1. Define 2 sliders r (varying between 0 and 12) and a (varying between 0 and r/2), note that this
automatically ensures r > 2a.

2. PlotC = (—a,0) and P = (a,0), A1 = (r — a,0) on the positive x-axis [type A_{1Q} for Aq].
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3. Construct circle L centred at C and passing through A,

5. Construct the perpendicular bisector of PQ.

4. Take any point Q on L.

rey

as2

Figure 4.

6. Move the point Q on L. Observe that the perpendicular bisector traces an ellipse. The ellipse may be
obtained by activating the trace option of the perpendicular bisector and moving the point Q along L.

7. Undo trace

Figure 5.
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8. Draw the line segment CQ 11. Undo both traces

9. Get the intersection between CQ and the perpendicular bisector of PQ i.e. Q, 12. Construct the midpoint A; of P and A
r=7
>
a=2
&
2 -1
10 ] H 1
Figure 6. :

10. Use trace on both Q; and the perpendicular bisector to verify that Q, indeed is the point on the tangent Figure 8.

13. Mark the point of intersection A, of L and the negative x-axis.

14. Construct the midpoint A, of P and Ay.

15. Construct the line perpendicular to x-axis through P.

16. Mark both intersection points B, and B, of the above line with circle L.
17. Mark midpoints B; and B, of CB;¢ and CB; respectively.

18. Mark midpoint O of CP.

19. Generate the ellipse by selecting the draw ellipse option from the tool bar; the points C, P and A; may be
used in this case.

20. Verify that Q, actually moves along this ellipse.

21. Vary the sliders (of course ensuring that r > 2a) to observe the corresponding change in the ellipse
and its equation.

AR,
AN

Figure 7.

At Right Angles | Vol. 4, No. 3, November 2015 Vol. 4, No. 3, November 2015 | At Right Angles -




80

10+
r=9

a=35

Figure 9.

In the above Geogebra construction we obtain a family of ellipses with major axis lying on the x-axis. An
ellipse with centre at the origin and major axis on x-axis is usually referred to as the ‘standard form’ of the
ellipse. An interesting task for students would be to generate ellipses with the major axis along the y-axis
and centres which do not lie at the origin. The equations corresponding to these non-standard forms may
also be studied - it is also instructive to key in an equation for the ellipse and predict its orientation,
centre and so on. Thus GeoGebra can work as a self-assessment tool and is useful for the student to gauge
one’s understanding of the topic. Not just this, by observing the student’s predicted outcome and the
actual outcome, the teacher will be able to quickly identify the student’s difficulties and address specific
instead of general problems. The use of dynamic geometry software thus has clear pedagogical benefits.

Generating the Hyperbola

This is very similar to the ellipse, including the calculations involved. The difference is that the point P is
taken outside the circle, we do not cut out the circle, and L is no longer an edge of the paper. The paper
needs to be semi-transparent for P to be visible through an extra layer of the paper as one tries to fold L to
P. Hence butter-paper is recommended.

However, if you do want to brave it out with regular paper, then poke at P to get an imprint on the other
side of the paper. Draw P and a thick, small circle around it with a pen. Now fold so that L passes through
P. Thanks to the small thick circle, P should be easier to see. If you are still having difficulty, hold up the
folded paper against light to locate P. You may have to hold the paper up for each fold.
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Figure 10.

The Geogebra steps are also the same except for the initial sliders:

1. Define 2 sliders a (varying between 0 and 6) and r (varying between 0 and 2a), note that this ensures
r < 2a.

The remaining steps remain the same.

Wy
.
a7
-] ] L] w = =

Figure 11.
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It is worth noting the positions of Q for which the perpendicular bisector of PQ and the radial line (not a
line segment) CQ become parallel. These perpendicular bisectors (or the corresponding fold lines) are the
asymptotes of the hyperbola.

Conclusion

Ellipses are most commonly encountered in the orbits of celestial bodies, e.g. the Earth around the Sun or
the Moon going around the Earth. All artificial satellites also move in elliptical orbits with the Earth at one
focus. However, they are encountered even earlier, say when we try to draw any circular vessel. A circle
when viewed at an angle appears as an ellipse. So the top edge of a circular vessel is usually drawn as this
conic. Like the parabola, the ellipse also has reflective properties which are made use of by architects to
construct whispering galleries. Any wave transmitted from one focus will travel through the second focus
after reflection off an elliptical wall. An ellipse occurs as the intersection when a cylinder and a plane
cross each other at an angle. This is useful in fitting pipes vertically on a sloping roof.

The hyperbola on the other hand can be seen in the shadow cast by a torch or a cylindrical lamp shade.
Cooling towers of nuclear plants have hyperbolic vertical cross sections. When stones are thrown in a
pond, the two sets of circular waves intersect along a hyperbola.

Whereas circles and straight lines can easily be drawn, it is not as easy to draw ellipses or hyperbolas on a
sheet of paper. The paper-folding activity generates these curves and the underlying geometry is
instrumental in understanding the geometry of the shapes formed. GeoGebra provides an additional layer
of understanding. Also, GeoGebra can help one predict the formula and the parameters involved. And all
that can be linked to the folds and proved using algebra!
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Two
Problems

COMoaC

solutions. We state the problems first so you have a chance to try them out on your own.

W e present this time a rather small collection of problems (just two), followed by their

Problems

(1) Isitpossible to arrange the numbers 1, 2, 3, ...,
15, 16 in a sequence such that the following
property is satisfied: Each pair of consecutive
numbers adds up to a perfect square?

(2) Let P be avariable point inside a given
triangle ABC, and let D, E, F be the feet of the
perpendiculars from P to the lines
BC,CA, AB, respectively. Find all P for which
BC/PD + CA/PE + AB/PF is least.

[Adapted from Problem 1 of the 22nd IMO,
held in the USA in 1981]

Solutions

Problem 1. Is it possible to arrange the numbers
1,2, 3, .., 15,16 in a sequence so that each pair of
consecutive numbers adds up to a perfect square?

We shall show that this is possible by actually
constructing such a sequence.

Let us assume that it is possible to do this, and see
where this hypothesis takes us. The least possible
sum of two numbers from the set is 3, and the
largest possible sum is 31. So each pair of

consecutive numbers in the sequence must add
up to one of the following numbers: 4,9, 16, 25.
Using these facts, we list the possible neighbours
of each number in the set, as shown below:

Number | Possible companions
1 3, 8, 15
2 7, 14
3 1, 6, 13
4 5, 12
5 4, 11
6 3, 10
7 2,9
8 1
9 7, 16
10 6, 15
11 5, 14
12 4, 13
13 3, 12
14 2, 11
15 1, 10
16 9

We notice that the numbers 8 and 16 have just
one possible neighbour each. This tells us right
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