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And other
memorable
triples – Part I

What’s interesting about the triple of consecutive integers
3, 4, 5? Almost anyone knows the answer to that: we have the
beautiful relation 3� + 4� = 5�, and therefore, as a consequence
of the converse of Pythagoras’ theorem, a triangle with sides
3, 4, 5 is right-angled.

It is easy to show that (3, 4, 5) is the only triple of consecutive
integers which can serve as the sides of a right-angled
triangle. But in fact rather more can be said, which also

makes the matter that much more interesting:

Theorem 1. Let 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛 be an integer. Then the triangle with sides
𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛 + 𝑛𝑛, 𝑛𝑛𝑛𝑛 + 𝑛𝑛 is obtuse-angled for 𝑛𝑛𝑛𝑛 = 𝑛𝑛; right-angled for 𝑛𝑛𝑛𝑛 = 3;
and acute-angled for all 𝑛𝑛𝑛𝑛 𝑛𝑛 3.

The statement is depicted in Figure 1. To see why the claim made
in the theorem is true, we examine the expression
𝑛𝑛𝑛𝑛� + (𝑛𝑛𝑛𝑛 + 𝑛𝑛)� − (𝑛𝑛𝑛𝑛 + 𝑛𝑛)� = 𝑛𝑛𝑛𝑛� − 𝑛𝑛𝑛𝑛𝑛𝑛 − 3, which conveniently
factorizes as (𝑛𝑛𝑛𝑛 + 𝑛𝑛)(𝑛𝑛𝑛𝑛 − 3). From this we infer the following:

𝑛𝑛𝑛𝑛� + (𝑛𝑛𝑛𝑛 + 𝑛𝑛)� − (𝑛𝑛𝑛𝑛 + 𝑛𝑛)� is �
< 0 for 𝑛𝑛𝑛𝑛 = 𝑛𝑛,
= 0 for 𝑛𝑛𝑛𝑛 = 3,
𝑛𝑛 0 for 𝑛𝑛𝑛𝑛 𝑛𝑛 3𝑛𝑛

The generalized version of Pythagoras’ theorem now implies the
stated result. (To refresh your memory, here is what this
theorem asserts: In △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, the quantity 𝑎𝑎𝑎𝑎� + 𝑏𝑏𝑏𝑏� − 𝑐𝑐𝑐𝑐� is greater
than, equal to, or less than 0, depending on whether ∡𝐴𝐴𝐴𝐴 is greater
than, equal to, or less than a right angle.)
Keywords: Pythagoras, triple, acute, obtuse, consecutive integers, touching
circles, trisection, in-radius

   Figure 12 maps the word “ideal” to “real.” Is the 
ideal real – and real just a mere reflection of the 
ideal? Or vice versa?
Clearly this is not an issue that will be resolved 
anytime soon – but it is intriguing to think about. 
So with that, we bid adieu, but before we depart 
we would like to bring you the following self-
serving public announcement. 

This is the last sentence of the article. No this is. 
This.Figure 12: The Ideal-Real ambigram, 

representing the paradoxical thought that the 
Real world often appears to be a reflection of 

the Ideal mathematical theory!
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PUNYA MISHRA, when not pondering visual paradoxes, is professor of educational technology at Michigan 
State University. GAURAV BHATNAGAR, when not reflecting on his own self, is Senior Vice-President at 
Educomp Solutions Ltd. They have known each other since they were students in high-school. 

Over the years, they have shared their love of art, mathematics, bad jokes, puns, nonsense verse and other 
forms of deep-play with all and sundry. Their talents, however, have never truly been appreciated by their 
family and friends. 

Each of the ambigrams presented in this article is an original design created by Punya with mathematical 
input from Gaurav (except when mentioned otherwise). Please contact Punya if you want to use any of 
these designs in your own work. 

To you, dear reader, we have a simple request. Do share your thoughts, comments, math poems, or any 
bad jokes you have made with the authors. Punya can be reached at punya@msu.edu or through his 
website at http://punyamishra.com and Gaurav can be reached at bhatnagarg@gmail.com and his website 
at http://gbhatnagar.com/.

Answer to Puzzle:
The Möbius Strip and the Penrose Triangle have an interesting relationship to each other. If you 
trace a line around the Penrose Triangle, you will get a 3-loop Möbius strip. M.C. Escher used this 
property in some of his most famous etchings. 

3, 4, 5 ...
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Figure 1. Triangle with sides n, n+ 1 and n+ 2

Remark 1. Wemay also express the above
argument in terms of the cosine rule which states
that in △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, the cosine of the angle opposite
side 𝑎𝑎𝑎𝑎 is equal to (𝑏𝑏𝑏𝑏� + 𝑐𝑐𝑐𝑐� − 𝑎𝑎𝑎𝑎�)/2𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐. Using this
we �ind that in the triangle with sides 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛 + 𝑛𝑛,
𝑛𝑛𝑛𝑛 + 2, the cosine of the largest angle (which will
be opposite the largest side) is:

𝑛𝑛𝑛𝑛� + (𝑛𝑛𝑛𝑛 + 𝑛𝑛)� − (𝑛𝑛𝑛𝑛 + 2)�
2𝑛𝑛𝑛𝑛(𝑛𝑛𝑛𝑛 + 𝑛𝑛) = 𝑛𝑛𝑛𝑛 − 𝑛𝑛

2𝑛𝑛𝑛𝑛
(on simpli�ication).

We see that the cosine of this angle is
negative for 𝑛𝑛𝑛𝑛 = 2, zero for 𝑛𝑛𝑛𝑛 = 𝑛𝑛, and positive
for 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛. The conclusion obtained is the same as
earlier: the triangle is obtuse-angled for 𝑛𝑛𝑛𝑛 = 2,
right-angled for 𝑛𝑛𝑛𝑛 = 𝑛𝑛, and acute-angled for
𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛.
Remark 2. The condition 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛 is needed so that
the sides satisfy the triangle inequality: “Any two
sides of a triangle are together greater than the
third one.” The inequality fails for 𝑛𝑛𝑛𝑛 = 𝑛𝑛, since
𝑛𝑛 + 2 = 𝑛𝑛, and we get a ��lat� triangle with angles
of 𝑛𝑛80∘, 0∘ and 0∘. (The above formula for the
cosine shows that the cosines of the angles are
−𝑛𝑛, 𝑛𝑛 and 𝑛𝑛, corresponding to angles of 𝑛𝑛80∘, 0∘

and 0∘.) If the de�inition of obtuseness can be
extended to cover such a triangle, then we do not
need to include the condition 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛; we could just
say: “Let 𝑛𝑛𝑛𝑛 be a positive integer.”
Thus the triple (𝑛𝑛, 4, 5) has some pretty features.
We now get a bit greedy and ask: Are there other
nice features that this triple has? We �ind that it
does, and in this article—which is the �irst in a
multi-part series—we shall describe three such
features.
In follow-up articles of the series we will ask: Are
there other triples of consecutive integers which
possess geometric features of interest? This is an
open-ended question and many different kinds of
results can be envisaged, depending on which
“features of interest” we choose to examine. But of
that, more later.

Three circles within a circle
In Figure 2 (a), we see a circle 𝒞𝒞𝒞𝒞� with three
circles within it, all tangent to it and also to each
other. Two of them, 𝒞𝒞𝒞𝒞� and 𝒞𝒞𝒞𝒞�, have half the size
of 𝒞𝒞𝒞𝒞� (and therefore pass through the centre 𝑂𝑂𝑂𝑂 of
𝒞𝒞𝒞𝒞�). The remaining one, 𝒞𝒞𝒞𝒞�, �its tightly in one of
the spaces enclosed by 𝒞𝒞𝒞𝒞�, 𝒞𝒞𝒞𝒞� and 𝒞𝒞𝒞𝒞�.
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Figure 2. Finding the radius of 𝒞𝒞𝒞𝒞�2 At Right Angles ∣ Vol. 4, No. 2, July 2015
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Figure 3. A 3-4-5 triangle hidden within the figure

Problem. To �ind the radius of 𝒞𝒞𝒞𝒞�.
Let 𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴 be the centres of 𝒞𝒞𝒞𝒞�, 𝒞𝒞𝒞𝒞�, 𝒞𝒞𝒞𝒞�, respectively.
Note that 𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴 are collinear with 𝑂𝑂𝑂𝑂; 𝐴𝐴𝐴𝐴 and 𝑂𝑂𝑂𝑂 are
collinear with the point of contact of 𝒞𝒞𝒞𝒞� and 𝒞𝒞𝒞𝒞�;
and 𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴 are collinear with the point of contact
of 𝒞𝒞𝒞𝒞� and 𝒞𝒞𝒞𝒞�. Let 𝒞𝒞𝒞𝒞� and 𝒞𝒞𝒞𝒞� have unit radius, and
let the radius of 𝒞𝒞𝒞𝒞� be 𝑥𝑥𝑥𝑥. Then, in Figure 2 (b),
△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is isosceles with 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝑥𝑥𝑥𝑥 𝐴𝐴 𝐴𝐴, and
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐵𝐵. Also, the altitude 𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂 𝐴𝐴 𝐵𝐵 𝐴𝐴 𝑥𝑥𝑥𝑥.
Nowwe are in a position to apply the Pythagorean
Theorem to the right-angled △𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴; we get:

(𝑥𝑥𝑥𝑥 𝐴𝐴 𝐴𝐴𝑥𝑥� 𝐴𝐴 (𝐵𝐵 𝐴𝐴 𝑥𝑥𝑥𝑥𝑥𝑥� 𝐴𝐴 𝐴𝐴�.

This simpli�ies to 6𝑥𝑥𝑥𝑥 𝐴𝐴 𝑥𝑥, giving 𝑥𝑥𝑥𝑥 𝐴𝐴 𝐵𝐵𝑥𝑥𝑥𝑥. Hence
the radius of 𝒞𝒞𝒞𝒞� is 𝐴𝐴𝑥𝑥𝑥𝑥 that of 𝒞𝒞𝒞𝒞�.
Now let us focus our attention on △𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴. Its side
lengths are the following:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴 𝐴𝐴 𝐵𝐵
𝑥𝑥 𝐴𝐴 5

𝑥𝑥𝐴𝐴 𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂 𝐴𝐴 𝐵𝐵 𝐴𝐴 𝐵𝐵
𝑥𝑥 𝐴𝐴 𝑥𝑥

𝑥𝑥𝐴𝐴 𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂 𝐴𝐴 𝐴𝐴𝐴𝐴

which means that 𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂 𝐵𝐵 𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂 𝐵𝐵 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝑥𝑥 𝐵𝐵 𝑥𝑥 𝐵𝐵 5. So,
lurking within this �igure is a 3-4-5 triangle� �e
have shown this in a separate �igure (Figure 3).

Folding a third
Given a square piece of paper—the kind used in
origami—it is easy to produce folds corresponding
to fractions such as 𝐴𝐴𝑥𝑥𝐵𝐵, 𝐴𝐴𝑥𝑥𝑥𝑥, 𝐴𝐴𝑥𝑥8, 𝑥𝑥𝑥𝑥𝑥𝑥, and so on;
repeated halving is involved, and nothing more. It
is less clear how we can do the same for a fraction
like 𝐴𝐴𝑥𝑥𝑥𝑥. It would seem that we have to resort to
visual estimation and/or trial-and-error. In the
July 2012 issue of At Right Angles (the inaugural
issue), Shiv Gaur described an elegant iterative
procedure that will divide a rectangular strip into
�ive equal parts; a similar method will yield three
equal parts. Here we describe a paper folding
method that will directly locate a point of
trisection of one side of the square.
In Figure 4 (a), we see a square 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 folded so
that vertex 𝐴𝐴𝐴𝐴 falls upon the midpoint 𝑃𝑃𝑃𝑃 of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. The
crease of the fold is 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄, and the image of 𝐴𝐴𝐴𝐴 under
the fold is 𝑆𝑆𝑆𝑆. The point where 𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆 cuts 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is 𝑇𝑇𝑇𝑇.
Claim. 𝑇𝑇𝑇𝑇 is a point of trisection of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, with
𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 𝐵𝐵 𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 𝐴𝐴 𝐵𝐵 𝐵𝐵 𝐴𝐴, and therefore, 𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐵𝐵𝑥𝑥𝑥𝑥,
𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝑥𝑥𝑥𝑥.
To prove the claim we move to Figure 4 (b). Let
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐵𝐵 and 𝐴𝐴𝐴𝐴𝑄𝑄𝑄𝑄 𝐴𝐴 𝑥𝑥𝑥𝑥; then 𝑄𝑄𝑄𝑄𝐴𝐴𝐴𝐴 𝐴𝐴 𝐵𝐵 𝐴𝐴 𝑥𝑥𝑥𝑥, hence
𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃 𝐴𝐴 𝐵𝐵 𝐴𝐴 𝑥𝑥𝑥𝑥 (for, 𝑄𝑄𝑄𝑄𝐴𝐴𝐴𝐴 coincides with 𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃 after the
fold). Applying the Pythagorean Theorem to
△𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑄𝑄𝑄𝑄, we get (𝐵𝐵 𝐴𝐴 𝑥𝑥𝑥𝑥𝑥𝑥� 𝐴𝐴 𝑥𝑥𝑥𝑥� 𝐴𝐴 𝐴𝐴�, and this yields
𝑥𝑥𝑥𝑥 𝐴𝐴 𝑥𝑥𝑥𝑥𝑥𝑥 on solving for 𝑥𝑥𝑥𝑥.
Next we use triangle similarity: △𝑄𝑄𝑄𝑄𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 𝑄𝑄 △𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇
(look at their angles to see why), so
𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 𝐵𝐵 𝐴𝐴 𝐴𝐴 𝐴𝐴 𝐵𝐵 𝑥𝑥𝑥𝑥, giving 𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 𝐴𝐴 𝑥𝑥𝑥𝑥𝑥𝑥. Since 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐵𝐵, it
follows that 𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 𝐵𝐵 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐵𝐵 𝐵𝐵 𝑥𝑥. Therefore, 𝑇𝑇𝑇𝑇 is a
point of trisection of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴.
And now for our bonus. Let us look again at
△𝑄𝑄𝑄𝑄𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃. Its side lengths are: 𝑄𝑄𝑄𝑄𝐴𝐴𝐴𝐴 𝐴𝐴 𝑥𝑥𝑥𝑥𝑥𝑥, 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 𝐴𝐴 𝐴𝐴 and
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Figure 1. Triangle with sides n, n+ 1 and n+ 2

Remark 1. Wemay also express the above
argument in terms of the cosine rule which states
that in △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, the cosine of the angle opposite
side 𝑎𝑎𝑎𝑎 is equal to (𝑏𝑏𝑏𝑏� + 𝑐𝑐𝑐𝑐� − 𝑎𝑎𝑎𝑎�)/2𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐. Using this
we �ind that in the triangle with sides 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛 + 𝑛𝑛,
𝑛𝑛𝑛𝑛 + 2, the cosine of the largest angle (which will
be opposite the largest side) is:

𝑛𝑛𝑛𝑛� + (𝑛𝑛𝑛𝑛 + 𝑛𝑛)� − (𝑛𝑛𝑛𝑛 + 2)�
2𝑛𝑛𝑛𝑛(𝑛𝑛𝑛𝑛 + 𝑛𝑛) = 𝑛𝑛𝑛𝑛 − 𝑛𝑛

2𝑛𝑛𝑛𝑛
(on simpli�ication).

We see that the cosine of this angle is
negative for 𝑛𝑛𝑛𝑛 = 2, zero for 𝑛𝑛𝑛𝑛 = 𝑛𝑛, and positive
for 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛. The conclusion obtained is the same as
earlier: the triangle is obtuse-angled for 𝑛𝑛𝑛𝑛 = 2,
right-angled for 𝑛𝑛𝑛𝑛 = 𝑛𝑛, and acute-angled for
𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛.
Remark 2. The condition 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛 is needed so that
the sides satisfy the triangle inequality: “Any two
sides of a triangle are together greater than the
third one.” The inequality fails for 𝑛𝑛𝑛𝑛 = 𝑛𝑛, since
𝑛𝑛 + 2 = 𝑛𝑛, and we get a ��lat� triangle with angles
of 𝑛𝑛80∘, 0∘ and 0∘. (The above formula for the
cosine shows that the cosines of the angles are
−𝑛𝑛, 𝑛𝑛 and 𝑛𝑛, corresponding to angles of 𝑛𝑛80∘, 0∘

and 0∘.) If the de�inition of obtuseness can be
extended to cover such a triangle, then we do not
need to include the condition 𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛𝑛; we could just
say: “Let 𝑛𝑛𝑛𝑛 be a positive integer.”
Thus the triple (𝑛𝑛, 4, 5) has some pretty features.
We now get a bit greedy and ask: Are there other
nice features that this triple has? We �ind that it
does, and in this article—which is the �irst in a
multi-part series—we shall describe three such
features.
In follow-up articles of the series we will ask: Are
there other triples of consecutive integers which
possess geometric features of interest? This is an
open-ended question and many different kinds of
results can be envisaged, depending on which
“features of interest” we choose to examine. But of
that, more later.

Three circles within a circle
In Figure 2 (a), we see a circle 𝒞𝒞𝒞𝒞� with three
circles within it, all tangent to it and also to each
other. Two of them, 𝒞𝒞𝒞𝒞� and 𝒞𝒞𝒞𝒞�, have half the size
of 𝒞𝒞𝒞𝒞� (and therefore pass through the centre 𝑂𝑂𝑂𝑂 of
𝒞𝒞𝒞𝒞�). The remaining one, 𝒞𝒞𝒞𝒞�, �its tightly in one of
the spaces enclosed by 𝒞𝒞𝒞𝒞�, 𝒞𝒞𝒞𝒞� and 𝒞𝒞𝒞𝒞�.

O

C1

C2 C3

C4

O

A

B C

(a) (b)
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Figure 5. The in-radius of a 3-4-5 triangle is 1 unit

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 𝑄𝑄 𝑄𝑄 𝑄𝑄 𝑄𝑄𝑄𝑄𝑄𝑄 𝑄𝑄 𝑄𝑄𝑄𝑄𝑄𝑄. Hence its sides are in the
ratio 𝑄𝑄 ∶ 𝑄𝑄 ∶ 𝑄𝑄. And since △𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is similar to
△𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄, its sides too are in the ratio 𝑄𝑄 ∶ 𝑄𝑄 ∶ 𝑄𝑄.
So we have not one but two 3-4-5 triangles hidden
within this �igure.

The in-radius of the 3-4-5 triangle
Our last featured property focuses on what looks
like a numerical oddity: the area of the 3-4-5
triangle equals its semi-perimeter. For, its area
equals �

�(𝑄𝑄 × 𝑄𝑄) 𝑄𝑄 6, and its semi-perimeter
equals �

�(𝑄𝑄 + 𝑄𝑄 + 𝑄𝑄) 𝑄𝑄 6. So both have the same
value. Those of you who are “physics-minded”
may give a cry of outrage here. “This is nonsense!
How can area ever equal semi-perimeter? Area
and semi-perimeter have different dimensions,
and one can never equal the other!” That is of
course perfectly right, and we shall not make that
error here. But the same observation can be
translated into a perfectly acceptable form to
which no one can object, via this simple formula
which connects the in-radius 𝑟𝑟𝑟𝑟 of a triangle, its
area Δ and its semi-perimeter 𝑠𝑠𝑠𝑠:

𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠 𝑄𝑄 Δ𝑟𝑟 or 𝑟𝑟𝑟𝑟 𝑄𝑄 Δ
𝑠𝑠𝑠𝑠 .

This tells us that for a 3-4-5 triangle, the in-radius
is 1 unit. (See Figure 5.) Now we see the source of
the dimensionality problem and its resolution at
the same time: namely, that the correct
relationship is “area equals semi-perimeter times
in-radius which equals 1 unit.”
The mathematician within us is now provoked to
ask the following question: Are there other
integer-sided right-angled triangles whose
in-radius is 1 unit? We shall show that the answer
is No.
Let 𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴 be an integer-sided right-angled triangle
with ∡𝐴𝐴𝐴𝐴 𝑄𝑄 𝐶𝐶𝐶𝐶∘. Let its sides be 𝑎𝑎𝑎𝑎𝑟𝑟 𝑎𝑎𝑎𝑎𝑟𝑟 𝑎𝑎𝑎𝑎. Then we

I

A

C BD

E

F

r

r

a− r

b− r

b− r

a− r

Figure 6. The in-radius of a right triangle:

r 𝑄𝑄 1
2(a+ b𝑄𝑄 c)

have:

Δ 𝑄𝑄 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑄𝑄 𝑟𝑟 𝑠𝑠𝑠𝑠 𝑄𝑄 𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎

𝑄𝑄 𝑟𝑟 ∴ 𝑟𝑟𝑟𝑟 𝑄𝑄 Δ
𝑠𝑠𝑠𝑠 𝑄𝑄 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎 .

Since 𝑟𝑟𝑟𝑟 𝑄𝑄 1we get:

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄 𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎𝑟𝑟 ∴ 𝑎𝑎𝑎𝑎 𝑄𝑄 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄 𝑎𝑎𝑎𝑎 𝑄𝑄 𝑎𝑎𝑎𝑎.

As the triangle is right-angled, we also have
𝑎𝑎𝑎𝑎� 𝑄𝑄 𝑎𝑎𝑎𝑎� + 𝑎𝑎𝑎𝑎�. It follows that

(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄 𝑎𝑎𝑎𝑎 𝑄𝑄 𝑎𝑎𝑎𝑎)� 𝑄𝑄 𝑎𝑎𝑎𝑎� + 𝑎𝑎𝑎𝑎�.

Wemust �ind pairs of integers that solve the
above equation. To avoid duplication of solutions
we may assume that 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎. Note that this actually
means 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 as we cannot have 𝑎𝑎𝑎𝑎 𝑄𝑄 𝑎𝑎𝑎𝑎. (We cannot
have an integer-sided right-angled triangle which
is also isosceles. This is the same as asserting that
√𝑄𝑄 is not a rational number.) Let us now write the
above equation as

(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄 𝑎𝑎𝑎𝑎 𝑄𝑄 𝑎𝑎𝑎𝑎)� 𝑄𝑄 𝑎𝑎𝑎𝑎� 𝑄𝑄 𝑎𝑎𝑎𝑎�.

The expression on the left side factorizes as
(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄 𝑎𝑎𝑎𝑎)(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄 𝑎𝑎𝑎𝑎 𝑄𝑄 𝑄𝑄𝑎𝑎𝑎𝑎) 𝑄𝑄 𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎 𝑄𝑄 1)(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄 𝑎𝑎𝑎𝑎 𝑄𝑄 𝑄𝑄𝑎𝑎𝑎𝑎).
Hence we have:

(𝑎𝑎𝑎𝑎 𝑄𝑄 1)(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄 𝑎𝑎𝑎𝑎 𝑄𝑄 𝑄𝑄𝑎𝑎𝑎𝑎) 𝑄𝑄 𝑎𝑎𝑎𝑎.

Since 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 and 𝑎𝑎𝑎𝑎𝑟𝑟 𝑎𝑎𝑎𝑎 are integers, we have
𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑄𝑄 1. Hence the above equality can hold only
if we have 𝑎𝑎𝑎𝑎 𝑄𝑄 𝑎𝑎𝑎𝑎 𝑄𝑄 1 and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄 𝑎𝑎𝑎𝑎 𝑄𝑄 𝑄𝑄𝑎𝑎𝑎𝑎 𝑄𝑄 1. These
conditions yield:

(𝑎𝑎𝑎𝑎 𝑄𝑄 1)𝑎𝑎𝑎𝑎 𝑄𝑄 (𝑎𝑎𝑎𝑎 𝑄𝑄 1) 𝑄𝑄 𝑄𝑄𝑎𝑎𝑎𝑎 𝑄𝑄 1𝑟𝑟 ∴ 𝑎𝑎𝑎𝑎� 𝑄𝑄 𝑄𝑄𝑎𝑎𝑎𝑎 𝑄𝑄 𝐶𝐶𝑟𝑟

which yields 𝑎𝑎𝑎𝑎 𝑄𝑄 𝑄𝑄 (obviously 𝑎𝑎𝑎𝑎 𝑏𝑏 𝐶𝐶) and hence
𝑎𝑎𝑎𝑎 𝑄𝑄 𝑄𝑄 and 𝑎𝑎𝑎𝑎 𝑄𝑄 𝑄𝑄. Thus the 3-4-5 triangle is the
only integer-sided right-angled triangle whose
in-radius is 1 unit.
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Alternate solution. Here is another way of
reaching the same conclusion. It may be preferred
by some, and it also generalizes more easily. It
starts by establishing a neat geometrical result: If
△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is right-angled with ∡𝐴𝐴𝐴𝐴 𝐶𝐶 𝐶𝐶𝐶𝐶∘, then the
radius of the incircle of the triangle is
(𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. The result has value and interest in
itself (mathematicians would call it a ‘lemma’).
Let the incircle touch the sides 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 at
points 𝐷𝐷𝐷𝐷𝐵𝐵 𝐷𝐷𝐷𝐷𝐵𝐵 𝐷𝐷𝐷𝐷 respectively. The triangle being
right-angled at 𝐴𝐴𝐴𝐴, points 𝐼𝐼𝐼𝐼𝐵𝐵 𝐷𝐷𝐷𝐷𝐵𝐵 𝐴𝐴𝐴𝐴𝐵𝐵 𝐷𝐷𝐷𝐷 form the
vertices of a square of side 𝑟𝑟𝑟𝑟, hence 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 𝐶𝐶 𝑟𝑟𝑟𝑟 𝐶𝐶 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷.
From this it follows that 𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴 𝐶𝐶 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑟𝑟𝑟𝑟 and
𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴 𝐶𝐶 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑟𝑟𝑟𝑟. Next, drawing on the fact that the two
tangents to a circle from a point outside the circle
have equal length, it follows that 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 𝐶𝐶 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑟𝑟𝑟𝑟 and
𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 𝐶𝐶 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑟𝑟𝑟𝑟. From this we get:

(𝑎𝑎𝑎𝑎 𝑎𝑎 𝑟𝑟𝑟𝑟𝑎𝑎 𝑎𝑎 (𝑎𝑎𝑎𝑎 𝑎𝑎 𝑟𝑟𝑟𝑟𝑎𝑎 𝐶𝐶 𝑎𝑎𝑎𝑎𝐵𝐵 𝑎𝑎 𝑟𝑟𝑟𝑟 𝐶𝐶 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎
𝑎𝑎 𝐵𝐵

as claimed.
Now we apply this result to the problem at hand.
Let 𝑎𝑎𝑎𝑎𝐵𝐵 𝑎𝑎𝑎𝑎𝐵𝐵 𝑎𝑎𝑎𝑎 be the sides of an integer-sided
right-angled triangle whose in-radius is 1 unit. We
may assume with no loss of generality that
𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎. The result just proved implies that
𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝐶𝐶 𝑎𝑎, giving 𝑎𝑎𝑎𝑎 𝐶𝐶 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎. Invoking the
Pythagorean relation we get:

𝑎𝑎𝑎𝑎� 𝑎𝑎 𝑎𝑎𝑎𝑎� 𝐶𝐶 (𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎�.
This yields: 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎 𝐶𝐶 𝐶𝐶, i.e.,
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶 𝑎𝑎𝑎𝑎. Adding 𝑎𝑎 to both sides and
factorizing, we get:
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎 𝐶𝐶 𝑎𝑎𝐵𝐵 𝑎𝑎 (𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝐶𝐶 𝑎𝑎.
The only way of expressing 𝑎𝑎 as a product of two
positive integers is 𝑎𝑎 𝐶𝐶 1 × 𝑎𝑎, so we must have
𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎 𝐶𝐶 1 and 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎 𝐶𝐶 𝑎𝑎 (remember that 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎),
giving 𝑎𝑎𝑎𝑎 𝐶𝐶 𝑎𝑎 and 𝑎𝑎𝑎𝑎 𝐶𝐶 𝑎𝑎 and hence 𝑎𝑎𝑎𝑎 𝐶𝐶 𝑐𝑐. We reach
the same conclusion as earlier.
The advantage of this approach is that it can easily
be extended. For example, we may want to list the

Pythagorean triples which correspond to
triangles with in-radius 𝑎𝑎 units. Since the 3-4-5
triangle has in-radius 1 unit, it follows by scaling
that the 6-8-10 triangle has in-radius 𝑎𝑎 units. Are
there any others? Let’s see …. Let 𝑎𝑎𝑎𝑎𝐵𝐵 𝑎𝑎𝑎𝑎𝐵𝐵 𝑎𝑎𝑎𝑎 be the
sides of an integer-sided right-angled triangle
whose in-radius is 𝑎𝑎 units; assume that 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎.
Then we have 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝐶𝐶 𝑎𝑎, giving 𝑎𝑎𝑎𝑎 𝐶𝐶 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎.
Hence we have:

𝑎𝑎𝑎𝑎� 𝑎𝑎 𝑎𝑎𝑎𝑎� 𝐶𝐶 (𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎�.

This yields: 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 1𝑎𝑎 𝐶𝐶 𝐶𝐶, i.e.,
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶 𝑎𝑎𝑎𝑎. Adding 1𝑎𝑎 to both sides and
factorizing, we get:

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 1𝑎𝑎 𝐶𝐶 𝑎𝑎𝐵𝐵 𝑎𝑎 (𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝐶𝐶 𝑎𝑎.

The ways of expressing 𝑎𝑎 as a product of two
positive integers are 𝑎𝑎 𝐶𝐶 1 × 𝑎𝑎 𝐶𝐶 𝑎𝑎 × 𝑎𝑎, so the
possibilities are:

(𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝐵𝐵 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝐶𝐶 (1𝐵𝐵 𝑎𝑎𝑎𝑎𝐵𝐵 𝑎𝑎 (𝑎𝑎𝑎𝑎𝐵𝐵 𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶 (𝑐𝑐𝐵𝐵 1𝑎𝑎𝑎𝑎𝑎𝑎
(𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝐵𝐵 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 𝐶𝐶 (𝑎𝑎𝐵𝐵 𝑎𝑎𝑎𝑎𝐵𝐵 𝑎𝑎 (𝑎𝑎𝑎𝑎𝐵𝐵 𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶 (𝑎𝑎𝐵𝐵 𝑎𝑎𝑎𝑎.

So there are two such triangles—the 5-12-13
triangle and the 6-8-10 triangle—which have
in-radius equal to 𝑎𝑎 units.
Readers may wish to continue the exploration and
search for 𝑟𝑟𝑟𝑟-values which give rise to large
numbers of candidate triangles.
Closing remark. We have attempted to list some
features of the right-angled triangle with sides
3-4-5, and to highlight con�igurations where this
triangle occurs naturally. Without doubt, there
are many more such features and many more such
con�igurations. We invite you to design
investigations for your students which add to the
above list. In the process, students could learn
how to make conjectures and then test them and
prove them using valid mathematical procedures.
May the list grow, and may the conjectures
outnumber the theorems!
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