
44 At Right Angles  | Vol. 4, No. 2, July 2015  Vol. 4, No. 2, July 2015 | At Right Angles 45 45 At Right Angles | Vol. 4, No. 2, July 2015

A

B CD

E

F

P

QR

Figure 1.

edges, thus making 𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡. It had been
conjectured as a result of careful GeoGebra-based
experimentation that the ratio of areas is
𝑡𝑡𝑡𝑡𝑡𝑡3𝑡𝑡𝑡𝑡� 𝑡𝑡 3𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡. But the formula had not been
proved. We must check after completing our study
whether the formula we obtain reduces to the one
above for the case when 𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡.
Let 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 denote the ratio
Area (△𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) ∶ Area (△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴). We certainly expect
the following of 𝑓𝑓𝑓𝑓:
• 𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑡𝑡 𝑡𝑡 𝑡𝑡; for if 𝑡𝑡𝑡𝑡 𝑡𝑡 𝑓𝑓 then 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷 coincide with
𝐴𝐴𝐴𝐴𝐷𝐷 𝐴𝐴𝐴𝐴𝐷𝐷 𝐴𝐴𝐴𝐴 respectively, so 𝑃𝑃𝑃𝑃𝐷𝐷 𝑃𝑃𝑃𝑃𝐷𝐷 𝑃𝑃𝑃𝑃 coincide with
𝐴𝐴𝐴𝐴𝐷𝐷 𝐴𝐴𝐴𝐴𝐷𝐷 𝐴𝐴𝐴𝐴 respectively, and △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is identical with
△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴.

• 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡; for if 𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡 then 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷 coincide with
𝐴𝐴𝐴𝐴𝐷𝐷 𝐴𝐴𝐴𝐴𝐷𝐷 𝐴𝐴𝐴𝐴 respectively, so 𝑃𝑃𝑃𝑃𝐷𝐷 𝑃𝑃𝑃𝑃𝐷𝐷 𝑃𝑃𝑃𝑃 coincide with
𝐴𝐴𝐴𝐴𝐷𝐷 𝐴𝐴𝐴𝐴𝐷𝐷 𝐴𝐴𝐴𝐴 respectively, and △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is identical with
△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴.

• 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 𝑓𝑓; for if 𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡, then 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷 lie at the
midpoints of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 respectively, which
means that 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 concur. Hence the points
𝑃𝑃𝑃𝑃𝐷𝐷 𝑃𝑃𝑃𝑃𝐷𝐷 𝑃𝑃𝑃𝑃 coincide, and △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 has zero area.

• 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡 𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡. This is because replacing 𝑡𝑡𝑡𝑡
by 𝑡𝑡 𝑓𝑓 𝑡𝑡𝑡𝑡 is essentially the same as replacing

△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 by △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and retaining the original
value of 𝑡𝑡𝑡𝑡.

The case when 𝐭𝐭𝐭𝐭 𝑡𝑡 𝐭𝐭𝐭𝐭𝑡𝑡𝐭𝐭𝐭𝐭. We start by studying the
case 𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡3 in an ad hoc manner. Recall that the
starting point of Thomas Linge�ja� rd’s
investigation was this case; GeoGebra had
revealed the ratio of areas to be 𝑡𝑡 ∶ 7. We will now
show how the result can be obtained. We shall
draw inspiration from some of the ‘backward’
proofs of Morley’s theorem (one such—due to
John Conway—is given elsewhere in this very
issue of At Right Angles). What we shall do is to
start with the ‘inner’ △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, extend the �igure in
an appropriate way and construct a △𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�

‘around’ it in a way that makes it visually obvious
that the area of △𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴� is 7 times that of △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.
Then we shall show that △𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴� is congruent to
the given △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. This will complete the proof.
Figure 2 (a) shows the given con�iguration, and
Figure 2 (b) shows our construction: sides 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 are extended in a cyclic manner through
their own length to points 𝐴𝐴𝐴𝐴�, 𝐴𝐴𝐴𝐴� and 𝐴𝐴𝐴𝐴�

respectively; that is, 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴� 𝑡𝑡 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴� 𝑡𝑡 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and
𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴� 𝑡𝑡 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. Then the segments 𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�, 𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�, 𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴� are
drawn. Let us �irst show that △𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴� has 7 times
the area of △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.
Join 𝐴𝐴𝐴𝐴�𝑃𝑃𝑃𝑃, 𝐴𝐴𝐴𝐴�𝑃𝑃𝑃𝑃 and 𝐴𝐴𝐴𝐴�𝑃𝑃𝑃𝑃. It is easy to see that the
seven triangles thus created all have exactly the
same area (we merely have to make repeated use
of the fact that amedian of a triangle divides it into
two parts with equal area). It follows immediately
that the area of △𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴� is 7 times that of △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.
Next, we extend sides 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 to meet the
sides 𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�, 𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�, 𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴� at points 𝐷𝐷𝐷𝐷�, 𝐷𝐷𝐷𝐷�, 𝐷𝐷𝐷𝐷�

respectively (see Figure 3). We must show that 𝐷𝐷𝐷𝐷�,
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How to
Prove It
In this article we examine how to prove a result obtained after
careful GeoGebra experimentation. It was featured in the March
2015 issue of At Right Angles, in the ‘Tech Space’ section.

IIn the ‘Tech Space’ article in the March 2015 issue of At Right
Angles, Thomas Linge��a� rd had considered the problem of a
triangle drawn within a given triangle in a speci�ied manner,

and had wondered what could be said about the ratio of their
areas. We study this problem in depth here.

Triangle in a triangle
We are given an arbitrary △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. Let 𝑡𝑡𝑡𝑡 be any number between 0
and 1. Locate points 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷 on sides 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 respectively,
dividing them in the ratio 𝑡𝑡𝑡𝑡 𝑡𝑡 1 𝑡𝑡 𝑡𝑡𝑡𝑡. This is the same as saying that

𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑡𝑡𝑡𝑡𝑡𝑡

Let segments 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 be drawn. The three lines intersect and
demarcate a triangle 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 within the larger triangle 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. The
question now asked is: What is the ratio of the area of△𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 to
that of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴? In what way does this ratio depend on 𝑡𝑡𝑡𝑡? (See
Figure 1.)
Note that in asking for a formula for ‘the’ ratio, we seem to be
assuming implicitly that the ratio of areas does not depend in any
way on the shape of △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴; it depends only on 𝑡𝑡𝑡𝑡. In fact we shall
�ind that this is actually the case.
In Thomas Linge��a� rd’s original article, each side had been
divided into 2𝑛𝑛𝑛𝑛 𝑛𝑛 1 equal parts (for a variable positive integer 𝑛𝑛𝑛𝑛),
and the points 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷 were the 𝑛𝑛𝑛𝑛-th points on their respective

Keywords: Vector, linear independence, triangle, ratio, pattern, area
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Figure 1.

edges, thus making 𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡. It had been
conjectured as a result of careful GeoGebra-based
experimentation that the ratio of areas is
𝑡𝑡𝑡𝑡𝑡𝑡3𝑡𝑡𝑡𝑡� 𝑡𝑡 3𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡. But the formula had not been
proved. We must check after completing our study
whether the formula we obtain reduces to the one
above for the case when 𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡.
Let 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 denote the ratio
Area (△𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) ∶ Area (△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴). We certainly expect
the following of 𝑓𝑓𝑓𝑓:
• 𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑡𝑡 𝑡𝑡 𝑡𝑡; for if 𝑡𝑡𝑡𝑡 𝑡𝑡 𝑓𝑓 then 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷 coincide with
𝐴𝐴𝐴𝐴𝐷𝐷 𝐴𝐴𝐴𝐴𝐷𝐷 𝐴𝐴𝐴𝐴 respectively, so 𝑃𝑃𝑃𝑃𝐷𝐷 𝑃𝑃𝑃𝑃𝐷𝐷 𝑃𝑃𝑃𝑃 coincide with
𝐴𝐴𝐴𝐴𝐷𝐷 𝐴𝐴𝐴𝐴𝐷𝐷 𝐴𝐴𝐴𝐴 respectively, and △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is identical with
△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴.

• 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡; for if 𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡 then 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷 coincide with
𝐴𝐴𝐴𝐴𝐷𝐷 𝐴𝐴𝐴𝐴𝐷𝐷 𝐴𝐴𝐴𝐴 respectively, so 𝑃𝑃𝑃𝑃𝐷𝐷 𝑃𝑃𝑃𝑃𝐷𝐷 𝑃𝑃𝑃𝑃 coincide with
𝐴𝐴𝐴𝐴𝐷𝐷 𝐴𝐴𝐴𝐴𝐷𝐷 𝐴𝐴𝐴𝐴 respectively, and △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is identical with
△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴.

• 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 𝑓𝑓; for if 𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡, then 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷 lie at the
midpoints of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 respectively, which
means that 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 concur. Hence the points
𝑃𝑃𝑃𝑃𝐷𝐷 𝑃𝑃𝑃𝑃𝐷𝐷 𝑃𝑃𝑃𝑃 coincide, and △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 has zero area.

• 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡 𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡. This is because replacing 𝑡𝑡𝑡𝑡
by 𝑡𝑡 𝑓𝑓 𝑡𝑡𝑡𝑡 is essentially the same as replacing

△𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 by △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and retaining the original
value of 𝑡𝑡𝑡𝑡.

The case when 𝐭𝐭𝐭𝐭 𝑡𝑡 𝐭𝐭𝐭𝐭𝑡𝑡𝐭𝐭𝐭𝐭. We start by studying the
case 𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡𝑡𝑡3 in an ad hoc manner. Recall that the
starting point of Thomas Linge�ja� rd’s
investigation was this case; GeoGebra had
revealed the ratio of areas to be 𝑡𝑡 ∶ 7. We will now
show how the result can be obtained. We shall
draw inspiration from some of the ‘backward’
proofs of Morley’s theorem (one such—due to
John Conway—is given elsewhere in this very
issue of At Right Angles). What we shall do is to
start with the ‘inner’ △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, extend the �igure in
an appropriate way and construct a △𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�

‘around’ it in a way that makes it visually obvious
that the area of △𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴� is 7 times that of △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.
Then we shall show that △𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴� is congruent to
the given △𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. This will complete the proof.
Figure 2 (a) shows the given con�iguration, and
Figure 2 (b) shows our construction: sides 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 are extended in a cyclic manner through
their own length to points 𝐴𝐴𝐴𝐴�, 𝐴𝐴𝐴𝐴� and 𝐴𝐴𝐴𝐴�

respectively; that is, 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴� 𝑡𝑡 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴� 𝑡𝑡 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and
𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴� 𝑡𝑡 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. Then the segments 𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�, 𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�, 𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴� are
drawn. Let us �irst show that △𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴� has 7 times
the area of △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.
Join 𝐴𝐴𝐴𝐴�𝑃𝑃𝑃𝑃, 𝐴𝐴𝐴𝐴�𝑃𝑃𝑃𝑃 and 𝐴𝐴𝐴𝐴�𝑃𝑃𝑃𝑃. It is easy to see that the
seven triangles thus created all have exactly the
same area (we merely have to make repeated use
of the fact that amedian of a triangle divides it into
two parts with equal area). It follows immediately
that the area of △𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴� is 7 times that of △𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.
Next, we extend sides 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 to meet the
sides 𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�, 𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴�, 𝐴𝐴𝐴𝐴�𝐴𝐴𝐴𝐴� at points 𝐷𝐷𝐷𝐷�, 𝐷𝐷𝐷𝐷�, 𝐷𝐷𝐷𝐷�

respectively (see Figure 3). We must show that 𝐷𝐷𝐷𝐷�,
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been expressed in terms of the non-zero,
non-parallel vectors 𝐚𝐚𝐚𝐚 and 𝐜𝐜𝐜𝐜. Hence the above
principle applies (i.e., 𝐚𝐚𝐚𝐚 and 𝐜𝐜𝐜𝐜must bemixed in the
same proportions in ������𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 and ������𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵), and we have:

1 − 𝑘𝑘𝑘𝑘
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑘𝑘𝑘𝑘

1 − 𝑘𝑘𝑘𝑘 . (3)

This allows us to �ind the unknown �uantity 𝑘𝑘𝑘𝑘.
Cross-multiplying and solving for 𝑘𝑘𝑘𝑘, we get:

𝑘𝑘𝑘𝑘 = 1 − 𝑘𝑘𝑘𝑘
1 − 𝑘𝑘𝑘𝑘 𝑡𝑡 𝑘𝑘𝑘𝑘� . (4)

We have thus found the ratio 𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. Having
found this ratio, we easily deduce that

Area of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
Area of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴 = 1 − 𝑘𝑘𝑘𝑘

1 − 𝑘𝑘𝑘𝑘 𝑡𝑡 𝑘𝑘𝑘𝑘� .

We also know that 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑘𝑘𝑘𝑘. From this it
follows that:

Area of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴
Area of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑘𝑘𝑘𝑘.

By multiplication we get:

Area of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
Area of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑘𝑘𝑘𝑘𝑡𝑡1 − 𝑘𝑘𝑘𝑘𝑡𝑡

1 − 𝑘𝑘𝑘𝑘 𝑡𝑡 𝑘𝑘𝑘𝑘� .

Observe that in the formula the only independent
variable is 𝑘𝑘𝑘𝑘; there is no dependence on the shape
of the triangle! It follows that the very same
formula also gives the ratio of areas of △𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 and
△𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 to that of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵. From this we deduce a
formula for 𝑓𝑓𝑓𝑓𝑡𝑡𝑘𝑘𝑘𝑘𝑡𝑡:

Area of △𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶
Area of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1 − 3 × 𝑘𝑘𝑘𝑘𝑡𝑡1 − 𝑘𝑘𝑘𝑘𝑡𝑡

1 − 𝑘𝑘𝑘𝑘 𝑡𝑡 𝑘𝑘𝑘𝑘� .

This simpli�ies after a couple of steps to:

𝑓𝑓𝑓𝑓𝑡𝑡𝑘𝑘𝑘𝑘𝑡𝑡 = 𝑡𝑡2𝑘𝑘𝑘𝑘 − 1𝑡𝑡�
1 − 𝑘𝑘𝑘𝑘 𝑡𝑡 𝑘𝑘𝑘𝑘� . (5)

We have obtained the desired formula! We may
easily verify that it passes all the tests we had
listed: 𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑡𝑡 = 1 = 𝑓𝑓𝑓𝑓𝑡𝑡1𝑡𝑡, 𝑓𝑓𝑓𝑓𝑡𝑡1𝐵𝐵2𝑡𝑡 = 𝑓𝑓 and
𝑓𝑓𝑓𝑓𝑡𝑡𝑘𝑘𝑘𝑘𝑡𝑡 = 𝑓𝑓𝑓𝑓𝑡𝑡1 − 𝑘𝑘𝑘𝑘𝑡𝑡.
Let us also study whether our newly discovered
formula yields correct results. Let 𝑘𝑘𝑘𝑘 = 1𝐵𝐵3 (the
case with which Thomas Linge��a� rd had begun his
investigation). Let’s see what our formula gives:

𝑓𝑓𝑓𝑓 ���� =
�1− �

��
�

1− �
� 𝑡𝑡 �

�
=

�
�
�
�
= 1

7.

It has given the right result! More generally, for
the case 𝑘𝑘𝑘𝑘 = 𝑡𝑡𝑡𝑡𝐵𝐵𝑡𝑡2𝑡𝑡𝑡𝑡 𝑡𝑡 1𝑡𝑡we �ind, after some
simpli�ication, that

𝑓𝑓𝑓𝑓 𝑓 𝑡𝑡𝑡𝑡
2𝑡𝑡𝑡𝑡 𝑡𝑡 1� =

1
3𝑡𝑡𝑡𝑡� 𝑡𝑡 3𝑡𝑡𝑡𝑡 𝑡𝑡 1.

We have proved the experimentally discovered
formula. The reach of the vector approach is
indeed very impressive.
Remark. We remark in closing that other
treatments are possible, including those that use
nothing more sophisticated than the geometry of
similar triangles. We will feature one such
approach in the next issue.
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Figure 3.

𝐸𝐸𝐸𝐸�, 𝐹𝐹𝐹𝐹� are points of trisection of the sides 𝐵𝐵𝐵𝐵�𝐶𝐶𝐶𝐶�,
𝐶𝐶𝐶𝐶�𝐴𝐴𝐴𝐴�, 𝐴𝐴𝐴𝐴�𝐵𝐵𝐵𝐵� respectively, i.e., 𝐵𝐵𝐵𝐵�𝐷𝐷𝐷𝐷�/𝐵𝐵𝐵𝐵�𝐶𝐶𝐶𝐶� =
𝐶𝐶𝐶𝐶�𝐸𝐸𝐸𝐸�/𝐶𝐶𝐶𝐶�𝐴𝐴𝐴𝐴� = 𝐴𝐴𝐴𝐴�𝐹𝐹𝐹𝐹�/𝐴𝐴𝐴𝐴�𝐵𝐵𝐵𝐵� = 1/3. If we do this, then
the proof will be complete, for we will have simply
reproduced the original con�iguration�except
that we will have started from the ‘inside’ rather
than the ‘outside’.
This will follow from a comparison of areas. Let
𝐵𝐵𝐵𝐵�𝐷𝐷𝐷𝐷�/𝐷𝐷𝐷𝐷�𝐶𝐶𝐶𝐶� = 𝑘𝑘𝑘𝑘. Then the ratio of areas of △𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵�𝐷𝐷𝐷𝐷�

and △𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶�𝐷𝐷𝐷𝐷� is also 𝑘𝑘𝑘𝑘, as is the ratio of areas of
△𝐴𝐴𝐴𝐴�𝐵𝐵𝐵𝐵�𝐷𝐷𝐷𝐷� and △𝐴𝐴𝐴𝐴�𝐶𝐶𝐶𝐶�𝐷𝐷𝐷𝐷�. Hence, by subtraction, so
also is the ratio of areas of △𝐴𝐴𝐴𝐴�𝐵𝐵𝐵𝐵�𝑃𝑃𝑃𝑃 and △𝐴𝐴𝐴𝐴�𝐶𝐶𝐶𝐶�𝑃𝑃𝑃𝑃.
But a glance at Figure 2 (b) shows that the ratio of
areas of △𝐴𝐴𝐴𝐴�𝐵𝐵𝐵𝐵�𝑃𝑃𝑃𝑃 and △𝐴𝐴𝐴𝐴�𝐶𝐶𝐶𝐶�𝑃𝑃𝑃𝑃 is 2 ∶ 4 = 1 ∶ 2.
Hence 𝑘𝑘𝑘𝑘 = 1/2, implying that 𝐵𝐵𝐵𝐵�𝐷𝐷𝐷𝐷�/𝐵𝐵𝐵𝐵�𝐶𝐶𝐶𝐶� = 1/3. In
the same way we show that 𝐶𝐶𝐶𝐶�𝐸𝐸𝐸𝐸�/𝐶𝐶𝐶𝐶�𝐴𝐴𝐴𝐴� = 1/3 and
𝐴𝐴𝐴𝐴�𝐹𝐹𝐹𝐹�/𝐴𝐴𝐴𝐴�𝐵𝐵𝐵𝐵� = 1/3. This is just what we wished to
prove.
For another treatment of this problem, please
refer to the article Feynman’s Triangle: Some
Feedback and More by Prof Michael de Villiers,
available online at:
http://mysite.mweb.co.za/residents/profmd/
feynman.pdf.
The con�iguration we study here is referred to by
de Villiers as ‘Feynman’s Triangle.’
Finding a formula for 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟 in the general case.
We now consider the general case and derive a
formula for 𝑓𝑓𝑓𝑓𝐟𝐟𝑓𝑓𝑓𝑓𝐟𝐟; we use vectors in our derivation.
We shall use a ‘subtraction logic’: we shall
subtract the areas of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃, △𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵 and △𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶
from that of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 and thus obtain the area of
△𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶. (See Figure 4.)
Let 𝐵𝐵𝐵𝐵 be treated as the origin, and let

������𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 = 𝐵𝐵𝐵𝐵𝐵𝐵 ������𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴 = 𝐵𝐵𝐵𝐵𝐵𝐵

A

B CD

E

F

P

QR

Figure 4.

By construction we have
�������𝐵𝐵𝐵𝐵𝐷𝐷𝐷𝐷 = 𝑓𝑓𝑓𝑓 ������𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 = 𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵 ������𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸 = 𝑓𝑓𝑓𝑓 ������𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 = 𝑓𝑓𝑓𝑓 𝐟𝐟𝐵𝐵𝐵𝐵 𝐚𝐚 𝐵𝐵𝐵𝐵𝐟𝐟 𝐵𝐵
������𝐴𝐴𝐴𝐴𝐹𝐹𝐹𝐹 = 𝑓𝑓𝑓𝑓 ������𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 = 𝐚𝐚𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵

Let 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃/𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 = 𝑘𝑘𝑘𝑘. To �ind the unknown quantity 𝑘𝑘𝑘𝑘,
we argue as follows:

�������𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 = ������𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 𝐴𝐴 �������𝐵𝐵𝐵𝐵𝐷𝐷𝐷𝐷 = 𝐚𝐚𝐵𝐵𝐵𝐵 𝐴𝐴 𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵

∴ ������𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 = 𝑘𝑘𝑘𝑘 �������𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷 = 𝐚𝐚𝑘𝑘𝑘𝑘𝐵𝐵𝐵𝐵 𝐴𝐴 𝑘𝑘𝑘𝑘𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵

∴ ������𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃 = ������𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴 𝐴𝐴 ������𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 = 𝐟𝐟1 𝐚𝐚 𝑘𝑘𝑘𝑘𝐟𝐟𝐵𝐵𝐵𝐵 𝐴𝐴 𝑘𝑘𝑘𝑘𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵

We also have:
������𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸 = 𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵 𝐴𝐴 𝐟𝐟1 𝐚𝐚 𝑓𝑓𝑓𝑓𝐟𝐟𝐵𝐵𝐵𝐵𝐵𝐵

This is a consequence of the ‘section formula’. Now
consider the last two results we have obtained:

������𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃 = 𝐟𝐟1 𝐚𝐚 𝑘𝑘𝑘𝑘𝐟𝐟𝐵𝐵𝐵𝐵 𝐴𝐴 𝑘𝑘𝑘𝑘𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵 (1)
������𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸 = 𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵 𝐴𝐴 𝐟𝐟1 𝐚𝐚 𝑓𝑓𝑓𝑓𝐟𝐟𝐵𝐵𝐵𝐵𝐵𝐵 (2)

To proceed further we make use of an important
yet simple result from vector algebra.

Suppose that 𝐮𝐮𝐮𝐮 and 𝐯𝐯𝐯𝐯 are two non-zero,
non-parallel vectors. Suppose further that for
some choice of non-zero real numbers 𝑎𝑎𝑎𝑎𝐵𝐵 𝑎𝑎𝑎𝑎𝐵𝐵 𝑎𝑎𝑎𝑎𝐵𝐵 𝑎𝑎𝑎𝑎 it
happens that 𝑎𝑎𝑎𝑎𝐮𝐮𝐮𝐮 𝐴𝐴 𝑎𝑎𝑎𝑎𝐯𝐯𝐯𝐯 is parallel to 𝑎𝑎𝑎𝑎𝐮𝐮𝐮𝐮 𝐴𝐴 𝑎𝑎𝑎𝑎𝐯𝐯𝐯𝐯.
Then it must be that 𝑎𝑎𝑎𝑎 ∶ 𝑎𝑎𝑎𝑎 = 𝑎𝑎𝑎𝑎 ∶ 𝑎𝑎𝑎𝑎. In other
words, 𝐮𝐮𝐮𝐮 and 𝐯𝐯𝐯𝐯 are ‘mixed’ in the same
proportions in the two vectors.

The result holds provided that 𝐮𝐮𝐮𝐮 and 𝐯𝐯𝐯𝐯 are
non-zero and non-parallel (i.e., they ‘point in
different directions’; in linear algebra we say that
they are ‘linearly independent’). The proof is
based on the fact that a non-zero multiple of 𝐮𝐮𝐮𝐮 can
never be equal to a non-zero multiple of 𝐯𝐯𝐯𝐯.
Now consider the vectors ������𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃 and ������𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸. They are
parallel, and in expressions (1) and (2) they have
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been expressed in terms of the non-zero,
non-parallel vectors 𝐚𝐚𝐚𝐚 and 𝐜𝐜𝐜𝐜. Hence the above
principle applies (i.e., 𝐚𝐚𝐚𝐚 and 𝐜𝐜𝐜𝐜must bemixed in the
same proportions in ������𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 and ������𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵), and we have:

1 − 𝑘𝑘𝑘𝑘
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑘𝑘𝑘𝑘

1 − 𝑘𝑘𝑘𝑘 . (3)

This allows us to �ind the unknown �uantity 𝑘𝑘𝑘𝑘.
Cross-multiplying and solving for 𝑘𝑘𝑘𝑘, we get:

𝑘𝑘𝑘𝑘 = 1 − 𝑘𝑘𝑘𝑘
1 − 𝑘𝑘𝑘𝑘 𝑡𝑡 𝑘𝑘𝑘𝑘� . (4)

We have thus found the ratio 𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. Having
found this ratio, we easily deduce that

Area of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
Area of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴 = 1 − 𝑘𝑘𝑘𝑘

1 − 𝑘𝑘𝑘𝑘 𝑡𝑡 𝑘𝑘𝑘𝑘� .

We also know that 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑘𝑘𝑘𝑘. From this it
follows that:

Area of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴
Area of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑘𝑘𝑘𝑘.

By multiplication we get:

Area of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
Area of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑘𝑘𝑘𝑘𝑡𝑡1 − 𝑘𝑘𝑘𝑘𝑡𝑡

1 − 𝑘𝑘𝑘𝑘 𝑡𝑡 𝑘𝑘𝑘𝑘� .

Observe that in the formula the only independent
variable is 𝑘𝑘𝑘𝑘; there is no dependence on the shape
of the triangle! It follows that the very same
formula also gives the ratio of areas of △𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 and
△𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 to that of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵. From this we deduce a
formula for 𝑓𝑓𝑓𝑓𝑡𝑡𝑘𝑘𝑘𝑘𝑡𝑡:

Area of △𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶
Area of △𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1 − 3 × 𝑘𝑘𝑘𝑘𝑡𝑡1 − 𝑘𝑘𝑘𝑘𝑡𝑡

1 − 𝑘𝑘𝑘𝑘 𝑡𝑡 𝑘𝑘𝑘𝑘� .

This simpli�ies after a couple of steps to:

𝑓𝑓𝑓𝑓𝑡𝑡𝑘𝑘𝑘𝑘𝑡𝑡 = 𝑡𝑡2𝑘𝑘𝑘𝑘 − 1𝑡𝑡�
1 − 𝑘𝑘𝑘𝑘 𝑡𝑡 𝑘𝑘𝑘𝑘� . (5)

We have obtained the desired formula! We may
easily verify that it passes all the tests we had
listed: 𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑡𝑡 = 1 = 𝑓𝑓𝑓𝑓𝑡𝑡1𝑡𝑡, 𝑓𝑓𝑓𝑓𝑡𝑡1𝐵𝐵2𝑡𝑡 = 𝑓𝑓 and
𝑓𝑓𝑓𝑓𝑡𝑡𝑘𝑘𝑘𝑘𝑡𝑡 = 𝑓𝑓𝑓𝑓𝑡𝑡1 − 𝑘𝑘𝑘𝑘𝑡𝑡.
Let us also study whether our newly discovered
formula yields correct results. Let 𝑘𝑘𝑘𝑘 = 1𝐵𝐵3 (the
case with which Thomas Linge��a� rd had begun his
investigation). Let’s see what our formula gives:

𝑓𝑓𝑓𝑓 ���� =
�1− �

��
�

1− �
� 𝑡𝑡 �

�
=

�
�
�
�
= 1

7.

It has given the right result! More generally, for
the case 𝑘𝑘𝑘𝑘 = 𝑡𝑡𝑡𝑡𝐵𝐵𝑡𝑡2𝑡𝑡𝑡𝑡 𝑡𝑡 1𝑡𝑡we �ind, after some
simpli�ication, that

𝑓𝑓𝑓𝑓 𝑓 𝑡𝑡𝑡𝑡
2𝑡𝑡𝑡𝑡 𝑡𝑡 1� =

1
3𝑡𝑡𝑡𝑡� 𝑡𝑡 3𝑡𝑡𝑡𝑡 𝑡𝑡 1.

We have proved the experimentally discovered
formula. The reach of the vector approach is
indeed very impressive.
Remark. We remark in closing that other
treatments are possible, including those that use
nothing more sophisticated than the geometry of
similar triangles. We will feature one such
approach in the next issue.
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