Problems for the Senior School

Problem Editors : PRITHWIJIT DE & SHAILESH SHIRALI

Problems

Problem IV-2-S.1

Starting with any three-digit number n we obtain a new number f(n) which is equal to the sum of the three digits of n, their three products in pairs and the product of all three digits. (Example: f(325) = (3 + 2 + 5) + (6 + 15 + 10) + 30 = 71.) Find all three-digit numbers such that f(n) = n. [Adapted from British Mathematical Olympiad, 1994]

Problem IV-2-S.2

Solve in integers the equation: $x + y = x^2 - xy + y^2$.

Problem IV-2-S.3

Let *a*, *b*, *c* be the lengths of the sides of a scalene triangle and *A*, *B*, *C* be the opposite angles. Prove that

2(Aa + Bb + Cc) > Ab + Ac + Ba + Bc + Ca + Cb.

Problem IV-2-S.4

Three positive real numbers *a*, *b*, *c* are such that

$$a^2 + 5b^2 + 4c^2 - 4ab - 4bc = 0$$

Can *a*, *b*, *c* be the lengths of the sides of a triangle? Justify your answer. [Regional Mathematical Olympiad, 2014]

Problem IV-2-S.5

Let *D*, *E*, *F* be the points of contact of the incircle of an acute-angled triangle *ABC* with the sides *BC*, *CA*, *AB* respectively. Let I_1, I_2, I_3 be the incentres of the triangles *AFE*, *BDF*, *CED*, respectively. Prove that the lines I_1D, I_2E, I_3F concur. [Adapted from the Regional Mathematical Olympiad, 2014]

Solutions of Problems in Issue-IV-1 (March 2015)

Solution to problem IV-1-S.1 Let

 $A = \{1, 3, 3^2, 3^3, \dots, 3^{2014}\}$. A partition of A is a union of non-empty disjoint subsets of A.

(a) Prove that there is no partition of A such that the product of all the elements in each subset is a square. Assume that such a partition exists. Then the product of all elements of *A* must be a square as well. But the product of all elements is equal to $3^{2015 \times 1007}$, which is not a square.

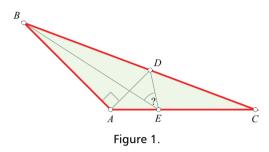
(b) Does there exist a partition of A such that the sum of elements in each subset is a square?

Keywords: digit, sum, product, triangle, sides, angles, incircle, partition

Observe that $1 + 3 = 2^2$ and therefore $3^{2n} + 3^{2n+1} = (3^n \times 2)^2$. Hence a possible partition is:

 $A = \{1, 3\} \cup \{3^2, 3^3\} \cup \cdots \cup \{3^{2012}, 3^{2013}\} \cup \{3^{2014}\}.$

Solution to problem IV-1-S.2 Let *ABC* be a triangle in which $\measuredangle A = 135^\circ$. The perpendicular to line *AB* at *A* intersects side *BC* at *D*, and the bisector of $\measuredangle B$ intersects side *AC* at *E*. Find the measure of $\measuredangle BED$ (see Figure 1).



Let *I* on *BE* be such that *IA* bisects $\angle DAB$. Then $\angle DIB = 90^{\circ} + \frac{1}{2} \angle DAB = 135^{\circ}$, hence $\triangle ABE \sim \triangle IBD$. It follows that $\frac{AB}{EB} = \frac{BI}{BD}$. Therefore $\triangle ABI \sim \triangle DBE$ as well. Since $\angle BED = \angle BAI$, we infer that $\angle BED = 45^{\circ}$.

Solution to problem IV-1-S.3 *Determine all pairs* (*n*, *p*) *of positive integers such that*

$$(n^{2}+1)(p^{2}+1)+45 = 2(2n+1)(3p+1).$$

The given expression simplifies to

$$(np-6)^2 + (n-2)^2 + (p-3)^2 = 5$$

hence $(np - 6)^2$, $(n - 2)^2$ and $(p - 3)^2$ are equal to 0, 1 and 4, in some order. By inspection we find (n, p) = (2, 4), (2, 2).

Solution to problem IV-1-S.4 Determine all

irrational numbers x such that both $x^2 + x$ and $x^3 + 2x^2$ are integers.

Let $a = x^2 + x$ and $b = x^3 + 2x^2$. Then $b - ax = x^2 = a - x$, hence x(a - 1) = b - a. Since x is an irrational number and a, b are integers, we deduce that a = b = 1, and therefore

$$x = \frac{-1 \pm \sqrt{5}}{2}.$$

Solution to problem IV-1-S.5 *Find all pairs* (p,q) *of prime numbers, with* $p \le q$ *, such that* $p(2q + 1) + q(2p + 1) = 2(p^2 + q^2).$

The equality can be written as $(q + p) = 2(q - p)^2$, which shows that p, q are unequal (if not, the right-hand side would be 0 while the left-hand side is positive). The same equation also shows that both p, q are odd, for the right-hand side is even and so therefore must be

the left-hand side, i.e., q + p. Hence $3 \le p < q$.

Suppose that $5 \le p$. Since $p, q \ge 5$, both p and q leave remainder 1 or 2 when divided by 3. If p and q leave the same remainder when divided by 3, then 3 divides the right-hand side, i.e., $2(q - p)^2$, but not the left-hand side, i.e., q + p. If p and q leave different remainders when divided by 3, then 3 divides the left-hand side but not the right-hand side. Hence it cannot be that $5 \le p$. Therefore p < 5. The only odd prime less than 5 is 3, so p = 3. The equation now yields $q + 3 = 2(q - 3)^2$, which simplifies to $2q^2 - 13q + 15 = 0$, or (q - 5)(2q - 3) = 0. This yields q = 5. Hence p = 3 and q = 5.