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Two Combinatorial

Problems

CRMoaC

‘Good’ subsets

The following problem was posed in a recent
mathematics contest:

Problem. Consider all three-element subsets of
the set S given by

S =1{0,1,2,3,4,5,6,7,8,9}.

Call a subset ‘good’ if the sum of its elements is a
multiple of 3. Thus, {2, 3,7} is good, but not

{2, 3,8}. Find the number of good three-element
subsets of S.

We shall find the answer in two ways — a
brute-force way, using complete enumeration,
and then by a more subtle approach, using ideas
from number theory.

It is always a good idea to have an idea what the
answer will be, roughly, when we are computing
any quantity. Here, the total number of
three-element subsets of S is (*?) which equals

10x9x8

=120.
1x2x3 0

For each subset, if we add the elements of that

subset and divide by 3, the remainder must be 0, 1

or 2. We wish to count the number of times the
remainder 0 occurs. It seems reasonable to
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suppose that there will not be a big difference
between the number of occurrences of each

of the remainders, 0, 1 and 2. Accordingly we
expect the answer to the problem to be close to
one-third of 120, i.e., close to 40. Let us see if this
is so.

Brute-force way. Let {a, b, c} denote a potential
good subset of S, with a < b < c¢. Then a can be
any of the numbers 0, 1, 2, ..., 7. Let a take each of
these values in turn. We shall count the number of
pairs {b, c} with a < b < c such that{a, b, c}is
good, and then find the total number from these
individual numbers.

Suppose a = 0. Then b + ¢ must be a multiple
of 3, so the possibilities for {b, c} are: {1, 2},
{1,5},{1,8},{2,4},{2,7}, {3,6},{3,9}, {4,5},
{4,8},{5,7},{6,9}, {7, 8}. Hence there are 12
possibilities.

Suppose a = 1. Then b + ¢ must be 1 less than a
multiple of 3, so the possibilities for {b, c} are:
{2,3},{2,6},{2,9},{3,5},{3,8}, {4, 7}, {5, 6},

{5, 9}, {6, 8}, {8,9}. Hence there are 10
possibilities.

Suppose a = 2. Then b + ¢ must be 1 more than
a multiple of 3, so the possibilities for {b, c} are:
{3,4},{3,7},{4,6},{4,9}, {5,8},{6,7}, {7,9}.
Hence there are 7 possibilities.



¢ Suppose a = 3. Then b + ¢ must be a multiple
of 3, so the possibilities for {b, c} are: {4, 5},
{4,8},{5,7},{6,9}, {7, 8}. Hence there are 5
possibilities.

¢ Suppose a = 4. Then b + ¢ must be 1 less than a
multiple of 3, so the possibilities for {b, c} are:
{5, 6}, {5,9}, {6,8}, {8, 9}. Hence there are 4
possibilities.

e Suppose a = 5. Then b + ¢ must be 1 more
than a multiple of 3, so the possibilities for
{b,c}are: {6,7},{7,9}. Hence there are 2
possibilities.

e Suppose a = 6. Then {b, c} must be {7, 8}.
Hence there is just 1 possibility.

e Suppose a = 7. Then {b, c} must be {8,9}.
Hence there is just 1 possibility.

So the required number is
124+104+7+54+4+2+14+1 =42 Note that
the answer is close to 40, as anticipated.

A subtler approach. Let’s see if we can do better.
We categorize the numbers from 0 to 9 according
to the remainder left when they are divided by 3.
We get three sets:

¢ Remainder 0: 4, = {0,3,6,9}
e Remainder 1: 4; ={1,4,7}
¢ Remainder 2: 4, = {2,5,8}

Now there are two ways in which the sum of three
numbers can be a multiple of 3 (a bit of thinking
will convince you why this must be true):

(i) The three numbers leave the same remainder
under division by 3; for example, a sum like
2454+ 8or0+ 6+ 9. The underlying reason
is, of course, thatthesum1 + 1+ 1isa
multiple of 3 (and hence also 2 + 2 + 2; the
sum 0 + 0 + 0 is clearly a multiple of 3).

(ii) The three numbers leave three different
remainders under division by 3; for example,
asumlike1+2+60r2+ 6+ 7.The
underlying reason is, of course, that the sum
0+ 1 + 2 is a multiple of 3.

It follows that there are just two kinds of
three-element subsets which are good: (i) those
for which the three elements are all from A, all
from A4, or all from A,; (ii) those which have one

element each from A,, A; and A,. Let us count
these separately.

Since |4y| = 4, |A1| = 3 and |4,| = 3, the
number of three-element subsets of the first
kind is the sum of the number of three-element
subsets of A, the number of three-element
subsets of A; and the number of three-element
subsets of A,; that is, the sum of (%), (3) and (3).
Thisequals4+1+1=6.

The number of three-element subsets of the
second kind is even simpler to compute: it is equal
to the product 4 X 3 X 3 = 36. Note the use of the
‘multiplication principle of counting’ here.

Hence the total number of good three-element
subsets is 6 + 36 = 42. We have got the same
answer as earlier.

There are yet other ways of solving this problem,
but we leave them for you to find.

Greatest odd divisor

Each positive integer has a greatest odd divisor.
For example:

¢ 10 = 5 X 2, so the greatest odd divisor of 10 is 5.
e 48 = 3 x 2%, so the greatest odd divisor of 48 is 3.

It should be clear that each positive integer n can
be written in just one way as the product of an
odd integer and a power of 2, and that odd integer
is the largest odd divisor of n.

Here is a curious problem posed in a recent
Regional Math Olympiad, pertaining to the
greatest odd divisor function:

Problem. Consider the following set S of n
numbers:

S={n+1,n+2,n+3,..,2n—1,2n}.

For each number in this set, find its greatest odd
divisor. Show that the sum of these numbers is n®.

The result looks quite astonishing, doesn’t it?
However a closer look reveals that it is nothing
but an old friend in a very clever disguise: namely,
the statement that the sum of the first n odd
numbers equals n?. For example, consider the
case when n = 6. We have:
7=7x2°, 8=1x23
10=5x2!, 11=11x2°,

9=9x2°
12 =3 x 22,
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So the odd numbers which we have to sum are
7,1,9,5,11, 3. Note that these are simply the
numbers 1,3,5,7,9,11 in a permuted order, and
their sum is 52.

But how do we show this in general? It is easier
than it looks. Consider the numbers in
S={n+1,n+2,n+3,..,2n—1,2n}. For
i=1,2,..,n—1,nletn + i be written as

n+i=a; X2b,

that is, a; X some power of 2, where q; is some
odd positive integer and b; a non-negative integer.
Obviously, we must have a; < n + i. Also,

n + i < 2n; therefore a; < 2n. Since q; is odd, it
follows that a; is one of the numbers
1,3,5..,2n— 1.

Next we ask: if it is possible for a; = a; for a pair
of unequal indices i and j? Suppose this is the
case; say a; = a; for some pair i, j (here i # j). Let
a denote the common value of a;, aj. Then we
have, by supposition:

n+i=ax2b,

n+j=ax2b.

It cannot be that b; = b}, for this would mean that
n+i=n+jie,i = j; but we had supposed that

T

oy g

i # j.Hence b; # b;. This means that one of the
b’s is larger than the other one.

Suppose that b; > b;. Then b; exceeds b; by at
least 1, as both b; and b; are integers. This implies
that

2b > 2 x 2P,

and hence that
n+j=2mn+i.

On the other hand, the least numberin Sisn + 1,
and the largest number is 2n, and 2n is strictly
less than twice (n + 1). So it cannot happen that
n+j = 2(n + i) for some pair of numbers
i,j€{1,2,..,nk

Therefore it cannot happen that a; = a; for some
pair i # j. In other words, the g;’s are all distinct
from one another. Where does this leave us? The
n odd numbers a4, a,, ..., a, all lie between 1 and
2n — 1, and no two are the same. Hence it must be
that the string (a4, a,, ..., a,) is simply a
permutation of the string (1, 3, ..., 2n — 1)!
Therefore the sum of the g;’s is the same as the
sum

1+34+--4+2n-1)

and we know that this is equal to n?.
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