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The following identity is very well known: for all positive integers n,

(1)	 13 + 23 + 33 + ... + n3 = (1 + 2 + 3 + ... + n)2

For example, when n = 2 each side equals 9, and when n = 3 each 
side equals 36. The result is seen sufficiently often that one may not 
quite realize its strangeness. Just imagine: a sum of cubes equal to 
the square of a sum!

Identity (1) is generally proved using the method of mathemati-
cal induction (indeed, this is one of the standard examples used to
illustrate the method of induction). The proof does what it sets out to 
do, but at the end we are left with no sense of why the result is true.

In this article we give a sense of the ‘why’ by means of a simple figure 
(so this is a ‘proof without words’; see page 85 of [1]; see also [2]). Then 
we mention a result of Liouville’s which extends this identity in a 
highly unexpected way.

Slicing a cube

Sum of Cubes and 
Square of a Sum
	 Understanding your identity
Memorisation is often the primary skill exercised when learning algebraic 

identities. Small wonder that students tend to forget them well before their use-by 

date! Here, the sum of cubes identity is unpacked using a series of pictures more 

powerful than symbols. It doesn’t stop there — the article then investigates other 

sets of numbers for which ‘the sum of the cubes is equal to the square of the sum’.
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1. A visual proof
We represent n3 using a cube measuring n × n × n, 
made up of n3 unit cubes each of which measures 
1 × 1 × 1. We now divide this cube into n slabs of 
equal thickness (1 unit each), by cuts parallel to its 
base; we thus get n slabs, each measuring n × n × 1 
and having n2 unit cubes.

When n is odd we retain the n slabs as they are. 
When n is even we further divide one of the slabs 
into two equal pieces; each of these measures 
n/2 × n × 1. Figure 1 shows the dissections for
n = 1, 2, 3, 4, 5. Observe carefully the difference be-
tween the cases when n is odd and when n is even.

Now we take one cube each of sizes 1 × 1 × 1,
2 × 2 × 2, 3 × 3 × 3, . . . , n × n × n, dissect each one in 
the way described above, and rearrange the slabs 
into a square shape as shown in Figure 2. (We have 
shown a slant view to retain the 3-D effect.) Note 
carefully how the slabs have been placed; in par-
ticular, the difference between how the even and 
odd cases have been handled.

Figure 2 makes it clear ‘why’ identity (1) is 
true. For, the side of the square is simply 
1 + 2 + 3 + ... + n, and hence it must be that
13 + 23 + 33 + ... +n3 = (1 + 2 + 3+... + n)2.

It is common to imagine after solving a problem 
that the matter has now been ‘closed’. But math-
ematics is not just about ‘closing’ problems! Often, 
it is more about showing linkages or building 
bridges. We build one such ‘extension-bridge’ here: 
a link between the above identity and divisors of 
integers.

2. A generalization of the identity
First we restate identity (1) in a verbal way: The 
list of numbers 1, 2, 3, . . . , n has the property that 
the sum of the cubes of the numbers equals the 
square of the sum of the numbers. The wording
immediately prompts us to ask the following:

Query. Are there other lists of numbers with the 
property that “the sum of the cubes equals the square 
of the sum”?

It turns out that there are lists with the SCSS (short 
for ‘sum of cubes equals square of sum’) property. 
Here is a recipé to find them. It is due to the great 
French mathematician Joseph Liouville (1809–
1882), so ‘L’ stands for Liouville.

L1:	Select any positive integer, N.

L2:	List all the divisors d of N, starting with 1 and 
ending with N.

L3:	For each such divisor d, compute the number of 
divisors that d has.

L4:	This gives a new list of numbers which has the 
SCSS property!

The recipé may sound confusing (divisors of divi-
sors! What next, you may ask) so we give a few ex-
amples. (In the table, ‘# divisors’ is a short form for 
‘number of divisors’)

FIGURE 1. Dissecting the cubes into flat slabs
(credits: Mr Rajveer Sangha)

FIGURE 2. Rearranging the slabs into a square shape; 
note how the odd and even-sized cubes are handled 
differently (credits: Mr Rajveer Sangha)
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Example 1. Let N = 10. Its divisors are 1,2,5,10 
(four divisors in all). How many divisors do these 
numbers have? Here are the relevant data, exhib-
ited in a table:

We get this list: 1, 2, 2, 4. Let us check whether this 
has the SCSS property; it does:

�� The sum of the cubes is 13 + 23 + 23 + 43

= 1 + 8 + 8 + 64 = 81.

�� The square of the sum is (1 + 2 + 2 + 4)2 =
92 = 81.

Example 2. Let N = 12. Its divisors are 1, 2, 3, 4, 
6, 12 (six divisors in all). How many divisors do 
these numbers have? We display the data in a 
table:

This time we get the list 1, 2, 2, 3, 4, 6. And the 
SCSS property holds:

�� The sum of the cubes is 13 + 23 + 23 + 33 + 43 + 
63 = 1 + 8 + 8 + 27 + 64 + 216 = 324.

�� The square of the sum is 
(1 + 2 + 2 + 3 + 4 + 6)2 = 182 = 324.

Example 3. Let N = 36. Its divisors are 1, 2, 3, 4, 6, 
9, 12, 18, 36 (nine divisors). Counting the divisors 
of these numbers (this time we have not displayed 
the data in a table) we get the list 1, 2, 2, 3, 4, 3, 6, 
6, 9. Yet again the SCSS property holds true:

�� The sum of the cubes is 13 + 23 + 23 + 33 + 43 + 
33 + 63 + 63 + 93 = 1296.

�� The square of the sum is
	 (1 + 2 + 2 + 3 + 4 + 3 + 6 + 6 + 9)2 = 362 = 1296.

Now we must show that equality holds for each N. 
The full justification involves a fair bit of algebra; 
we shall do only the initial part, leaving the rest 
for you. It turns out that a critical role is played 
by the prime factorization of N. We consider two 
cases: (i) N is divisible by just one prime number; 
(ii) N is divisible by two or more distinct prime 
numbers.

A key observation which we shall use repeatedly 
is the following: A divisor of a positive integer 
N has for its prime factors only those primes 
which divide N. For example, the divisors of a 
power of 2 can only be powers of 2. If N is divisible 
by only two primes p and q, then every divisor of 
N must be made up of the very same two primes.

The case when N is divisible by just one prime 
number. Rather conveniently, this case turns 
out to reduce to the very identity with which we 
started! Suppose that N = pa where p is a prime 
number and a is a positive integer. Since the
divisors of a prime power can only be powers 
of that same prime number, the divisors of pa

are the following a + 1 numbers:

1, p, p2, p3, . . . , pa.

How many divisors do these numbers have? 1 has 
just 1 divisor; p has 2 divisors (1 and p); p2 has 3 
divisors (1, p and p2); p3 has 4 divisors (1, p, p2 and 
p3); . . . ; and pa has a + 1 divisors. So after carrying 
out Liouville’s recipé we get the following list of 
numbers:

1, 2, 3, . . . , a + 1.

Does this have the SCSS property? That is, is it true 
that

13 + 23 + 33 + . . . +(a + 1)3 = (1 + 2 + 3 + . . . + (a + 1))2?

Yes, of course it is true! — it is simply identity (1) 
with n = a + 1. And we know that the identity is 
true. So Liouville’s recipé works when N = pa.

d

Divisors of d
# divisors of d

1
{1}
1

2
{1, 2}

2

5
{1, 5}

2

10
{1, 2, 5, 10}

4

d

Divisors of d
# divisors of d

1
{1}
1

2
{1, 2}

2

3
{1, 3}

2

4
{1, 2, 4}

3

d

Divisors of d
# divisors of d

6
{1, 2, 3, 6}

4

12
{1, 2, 3, 4, 6, 12}

6
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We have thus found an infinite class of integers for 
which the recipé works: all prime powers.

Note one curious fact: the choice of prime p does 
not matter, we get the same sum-of-cubes relation 
whichever prime we choose.

The case when N is divisible by just two 
primes. Let us go step by step, moving from the 
simplest of cases. Suppose that the only primes 
dividing N are p and q (where p ≠ q). We look at a 
few possibilities.

�� N = pq: In this case N has four divisors: 1, p, q, 
pq. The numbers of divisors that these divi-
sors have are: 1, 2, 2, 4. This list has the SCSS 
property:

	 13 + 23 + 23 + 43 = 81 = (1 + 2 + 2 + 4)2.

�� N = pq2: In this case N has six divisors: 1, p, q, 
pq, q2, pq2. The numbers of divisors that these 
divisors have are: 1, 2, 2, 4, 3, 6. This list too 
has the SCSS property:

	 13 + 23 + 23 + 43 + 33 + 63 = 324
= (1 + 2 + 2 + 4 + 3 + 6)2.

�� N = pq3: In this case N has eight divisors: 1, p, 
q, pq, q2, pq2, q3, pq3. The numbers of divisors 
are: 1, 2, 2, 4, 3, 6, 4, 8. This list has the SCSS 
property:

	 13 + 23 + 23 + 43 + 33 + 63 + 43 + 83 = 900
= (1 + 2 + 2 + 4 + 3 + 6 + 4 + 8)2.

�� N = p2q2: In this case N has nine divisors:
1, p, p2, q, pq, p2q, q2, pq2, p2q2. The numbers of 
divisors are: 1, 2, 3, 2, 4, 6, 3, 6, 9. Yet again the 
list has the SCSS property:

	 13 + 23 + 33 + 23 + 43 + 63 + 33 + 63 + 93 = 1296
= (1 + 2 + 3 + 2 + 4 + 6 + 3 + 6 + 9)2.

We see that the Liouville recipé works in each 
instance. (As earlier, note that the relations we 
get do not depend on the choice of p and q. It only 
matters that they are distinct primes.)

How do we handle all such cases in one clean 
sweep (i.e., N = pa × qb × r c × ... where p, q, r, . . . are 
distinct prime numbers, and a, b, c, . . . are positive 
integers)? We indicate a possible strategy in the 
following sequence of problems, leaving the solu-
tions to you.

3. Outline of a general proof
Problem 1: Suppose that M and N are coprime 
positive integers. Show that every divisor of MN can 
be written in a unique way as a product of a divisor 
of M and a divisor of N. (Note. This statement is not 
true if the word ‘coprime’ is removed.)

For example, take M = 4, N = 15; then MN = 60. 
Take any divisor of 60, say 10. We can write 
10 = 2 × 5 where 2 is a divisor of M and 5 is a divi-
sor of N, and this is the only way we can write 10 
as such a product.

Problem 2: Show that if M and N are coprime posi-
tive integers, and the divisors of M are a1, a2, a3, . . . 
while the divisors of N are b1, b2, b3, . . ., then every 
divisor of MN is enumerated just once when we mul-
tiply out the following product, term by term:

(a1 + a2 + a3 + ... ) × (b1 + b2 + b3 + ... ).

For example, to enumerate the divisors of  
60 = 4 × 15 we multiply out, term by term:
(1 + 2 + 4) × (1 + 3 + 5 + 15), giving us the divisors 
1 × 1 = 1, 1 × 3 = 3, 1 × 5 = 5, 1 × 15 = 15, 2 × 1 = 2, 
2 × 3 = 6, 2 × 5 = 10, 2 × 15 = 30, 4 × 1 = 4,
4 × 3 = 12, 4 × 5 = 20 and 4 × 15 = 60. Check that 
we have got all the divisors of 60, once each.

Problem 3: Show that if M and N are coprime posi-
tive integers, and the Liouville recipé works for M 
and N separately, then it also works for the product 
MN.

We invite you to supply proofs of these three as-
sertions. With that the proof is complete; for, the 
prescription works for prime powers (numbers 
of the form pa). Hence it works for numbers of the 
form pa × qb (where the primes p, q are distinct). 
Hence also it works for numbers of the form 
pa × qb × rc (where the primes p, q, r are distinct). 
And so on.

You may wonder: Does Liouville’s recipé generate 
all possible lists of numbers with the SCSS prop-
erty? Think about it.
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In the last issue of this magazine, we saw a proof of the theorem of Pythagoras based on the intersecting 
chords theorem (“If chords AB and CD of a circle intersect at a point P, then PA • PB = PC • PD”). It turns out 
that the same approach (and very nearly the same diagram) will yield a proof of the cosine rule as well.

Let ∆ABC be given; for convenience we take it to be acute angled. Draw a circle with centre C and radius 
a; it passes through B. Next, extend BA to D, and AC to E and F, with D, E and F on the circle, as shown. (We 
have drawn the figure under the assumption that a > b.) Let M be the midpoint of chord BD; then CM ⊥ BD. 
We now reason as shown.

Apply the intersecting chord theorem to chords BD and EF; we get:

c(c − 2bcosA) = (a − b)(a + b),

∴ a2 = b2 + c2 −2bccosA,

which is the cosine rule applied to side a of ∆ABC.

We had drawn the figure under the assumption that a > b. Please find out for yourself what changes we 
need to make if instead we have a < b or a = b.
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�� BC = a, CA = b, AB = c

�� CF = a, EA = a−b

�� CM ⊥ BD, ∴ BM = DM

�� AM = b cosA

�� BM = c − b cosA

�� DM = c − b cosA

�� DA = c − 2b cosA

�� FA = a + b, EA = a – b

by


