
A Plethora

One Problem,
Six Solutions

Connecting Trigonometry, Coordinate Geometry,
Vectors and Complex Numbers

Most mathematics teachers have a soft corner for math problems which, in a
single setting, offer a platform to showcase a variety of different concepts and
techniques. Such problems are very useful for revision purposes, but they
offer much more: they demonstrate the deep and essential
interconnectedness of ideas in mathematics, and their consistency.

In this article we study a simple and easily stated problem (see
Figure 1) which can be solved in a multiplicity of ways— half
a dozen at last count. After presenting the solutions we find a

bonus: an unsuspected connection with Pythagorean triples!
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FIGURE 1. Statement of the problem

Problem.
ABCD is a square; E and
F are points of trisection of the
sidesAB and CB respectively,
with E closer toA than
to B , and F closer to C than
to B (soAE/AB = 1/3 and
CF/CB = 1/3). SegmentsDE

andDF are drawn as shown.

Show that sin � EDF = 4/5.

Vol. 1, No. 3, March 2013 | At Right Angles 35

in
 t

he
 c

la
ss

ro
om

A Plethora

One Problem, Six Solutions

Connecting Trigonometry, Coordinate Geometry, Vectors and Complex
Numbers

C
⊗

M αC

Most mathematics teachers have a soft corner for math problems which in a single
setting offer a platform to showcase a variety of different concepts and techniques.
Such problems are very useful for revision purposes, but they offer much more: they
demonstrate the deep and essential interconnectedness of ideas in mathematics, and

their consistency.

In this article we study a simple and easily stated problem (see Figure 1) which can be
solved in a multiplicity of ways — half a dozen at last count. After presenting the solutions
we find a bonus: an unsuspected connection with Pythagorean triples!

Problem. ABCD is a square; E and F are points
of trisection of the sides AB and CB respectively,
with E closer to A than to B, and F closer toC
than to B (so AE/AB= 1/3 and CF/CB= 1/3).
Segments DE and DF are drawn as shown.

Show that sin∡EDF = 4/5.

FIGURE 1. Statement of the problem

I. FIRST SOLUTION, USING THE COSINE RULE

We take the side of the square to be 3 units; then AE =CF = 1 unit, and BE = BF = 2
units. Let ∡EDF be denoted by θ . Join EF .
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I. First solution, using the cosine rule
We take the side of the square to be 3 units; then AE = CF = 1 unit, and BE = BF = 2 units. Let
� EDF be denoted by θ . Join EF .
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• Using the Pythagorean theoremwe getDE2 =
DF 2 = 10, and EF 2 = 8.

• In�EDF we have, by the cosine rule: EF 2 =
DE2 + DF 2 − 2DE · DF · cos θ.

• So cos θ = (10+ 10− 8)/(2× 10) = 3/5.
• Since θ is acute, sin θ is positive. Hence: sin θ =√

1− 32/52 = 4/5.

II. Second solution, using the trig addition formulas
As earlier, we take the side of the square to be 3 units.
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• Let � ADE = α; then � FDC = α too.
• SinceAE = 1 andDE = √

10wehave sinα =
1/

√
10 and cosα = 3/

√
10.

• Since cos 2α = cos2 α−sin2 α, we get cos 2α =
9/10− 1/10 = 4/5.

• Since {2α, θ} are complementary angles, the
sine of either one equals the cosine of the other
one.

• Hence sin θ = 4/5.

III. Third solution, using slopes
LetD be treated as the origin, ray−→

DC as the x-axis, and−→
DA as the y-axis.
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• The slope of lineDF is 1/3.
• The slope of lineDE is 3/1.
• By the ‘angle between two lines’ formula,
tan θ = (3/1− 1/3)/(1+ 3/1× 1/3), i.e.,
tan θ = 4/3.

• Hence sin θ = 4/
√
42 + 32 = 4/5.
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IV. Fourth solution, using the vector dot product
Let D be treated as the origin, ray −→

DC as the unit vector �i along the x-axis, and −→
DA as the unit vector

�j along the y-axis. Recall that if �u and �v are two vectors, and the angle between them is φ, then
�u · �v =| �u | | �v | cosφ.
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• We have:−→CF = �j/3 and−→
AE = �i/3.

• Hence−→
DF = �i+�j/3 and−→

DE = �i/3+�j.
• Hence−→

DF · −→
DE = 1/3+ 1/3 = 2/3.

• Also, | −→
DE |=| −→

DF |= √
1+ 1/9 = √

10/3.
• Hence

√
10/3 · √

10/3 · cos θ = 2/3, giving
cos θ = 2/3 · 9/10 = 3/5.

• Hence sin θ = 4/5.

V. Fifth solution, using the vector cross product
The same approach as in the fourth solution, but this time we use the cross product rather than the dot
product. Let �k be the unit vector along the z-direction. Recall that if �u and �v are two vectors, and the
angle between them is φ, then | �u × �v |=| �u | | �v | sinφ.
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• We have:−→
DF = �i+�j/3 and−→

DE = �i/3+�j.
• Hence −→

DF × −→
DE = (1 − 1/9) �k = 8/9 �k.

(Remember that �i×�j = �k, and �j×�i = −�k.)
• Hence | −→

DF × −→
DE |= 8/9.

• Also, | −→
DE |=| −→

DF |= √
1+ 1/9 = √

10/3.
• Hence

√
10/3 · √

10/3 · sin θ = 8/9, giving
sin θ = 8/10 = 4/5.

VI. Sixth solution, using complex numbers
Our last solution uses the fact that multiplication by the imaginary unit i = √−1 achieves a rotation
through 90◦ about the origin, in the counter-clockwise (‘anti-clockwise’) direction.

LetD be treated as the origin, lineDC as the real axis, and lineDA as the imaginary axis. Take the side
of the square to be 3 units. Then the complex number representing F is 3+ i, and the complex number
representingE is 1+ 3i.
A B

CD

E

F

θ

Re

Im

• Let z = cos θ + i sin θ . Then |z| = 1, and
multiplication by z achieves a rotation through
θ about the origin 0, in the counter-clockwise
direction.

• Hence z·(3+i) = 1+3i. This equation in zmay
be solved by multiplying both sides by 3− i.

• Therefore z = (1 + 3i)(3 − i)/(32 − i2) =
(6+ 8i)/10.

• Hence sin θ = 8/10 = 4/5.
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Remark. So there we have it: one problemwith six solutions. Is there a ‘best’ among these solutions?We
feel not. On the contrary: they complement each other very beautifully. (And there may be more such
elegant solutions waiting to be found by you . . . .)

A PPT connection
Before closing we draw the reader’s attention to a surprising but pleasing connection between this
problem and the determination of Primitive Pythagorean Triples.

Observe the answer we got for the problem posed above: sin θ = 4/5. Hence θ is one of the acute angles
of a right triangle with sides 3, 4, 5. Don’t these numbers look familiar? Yes, of course: (3, 4, 5) is a PPT.
Is this a happy coincidence?

Let’s explore further . . . . Let us vary the ratio in which E and F divide segments AB and BC, while
maintaining the equality AE/EB = CF/FB , and compute sin � EDF and cos � EDF each time. We
summarized the findings below.

• If AE/AB = CF/CB = 1/4, we get sin � EDF = 15/17 and cos � EDF = 8/17. These values point
to the PPT (8, 15, 17).

• If AE/AB = CF/CB = 1/5, we get sin � EDF = 12/13 and cos � EDF = 5/13. These values point
to the PPT (5, 12, 13).

• If AE/AB = CF/CB = 1/6, we get sin � EDF = 35/37 and cos � EDF = 12/37. These values point
to the PPT (12, 35, 37).

• If AE/AB = CF/CB = 2/7, we get sin � EDF = 45/53 and cos � EDF = 28/53. These values point
to the PPT (28, 45, 53).

A PPT on every occasion! The connection is clearly something to be explored further. But we leave this
task to the reader. (Note that we seem to have found a new way of generating PPTs!)
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