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In this edition of ‘Adventures’ we study a few
miscellaneous problems, mostly from the Pre-Regional
Mathematics Olympiad (PRMO; this year’s PRMO was

conducted on August 19 in centres all over the country). As
usual, we pose the problems first and present solutions later.

Miscellaneous problems
Problem 1. Consider all 6-digit numbers of the form abccba

where b is odd. Determine the number of all
such 6-digit numbers that are divisible by 7.
(Problem 3 of PRMO 2018)

Problem 2. In a triangle ABC, the median from B to CA is
perpendicular to the median from C to AB. If
the median from A to BC is 30, determine
(BC2 + CA2 + AB2)/100. (Problem 10 of
PRMO 2018)

Problem 3. If a, b, c ≥ 4 are integers, not all equal, and
4abc = (a+ 3)(b+ 3)(c+ 3), then what is the
value of a+ b+ c? (Problem 18 of PRMO 2018)

Problem 4. A positive integer k is said to be ‘good’ if there
exists a partition of the set {1, 2, 3, . . . , 20} into
disjoint proper subsets such that the sum of the
numbers in each subset of the partition is k.
How many good numbers are there? (Problem
22 of PRMO 2018)

Problem 5. Find all prime numbers p such that 1
p

(
2p−1 − 1

)
is a perfect square. (Problem posed on the Math
Stack Exchange website)
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Solutions to the problems

Solution to problem 1
Let n be a 6-digit number of the form abccba; then

n = 105a+ 104b+ 103c+ 102c+ 10b+ a = 100001a+ 10010b+ 1100c.

Take remainders modulo 7. We get n ≡ 6a+ c (mod 7) ≡ c− a (mod 7). So, for n to be a multiple of 7,
we must have a ≡ c (mod 7). Note that the value of b does not affect divisibility of n by 7. Moreover, we
must have a > 0, as it is the leading digit of the number. We now list the possibilities.

• a = 1. Since a ≡ c (mod 7), the possible values of c are 1, 8 (2 choices). There are 5
choices for b (namely, 1, 3, 5, 7, 9). This yields 10 possibilities.

• a = 2. The possible values of c are 2, 9 (2 choices). With 5 choices for b, this yields 10
possibilities.

• a = 3. The only possible value of c is 3. This yields 5 possibilities.

• a = 4. The only possible value of c is 4. This yields 5 possibilities.

• a = 5. The only possible value of c is 5. This yields 5 possibilities.

• a = 6. The only possible value of c is 6. This yields 5 possibilities.

• a = 7. The possible values of c are 0, 7 (2 choices). This yields 10 possibilities.

• a = 8. The possible values of c are 1, 8 (2 choices). This yields 10 possibilities.

• a = 9. The possible values of c are 2, 9 (2 choices). This yields 10 possibilities.

Hence the total number of possibilities is 5 × 10 + 4 × 5 = 70.

Solution to problem 2
Here we make use of (i) the theorem of Pythagoras; (ii) the fact that the circumcentre of the right-angled
triangle lies at the midpoint of its hypotenuse; (iii) the fact that the point of intersection of two medians of
a triangle is a point of trisection of each median.

Let BG = 2x, CG = 2y; then GE = x, GF = y. Also

BC2 = BG2 + CG2 = 4
(
x2 + y2

)
.

We are told that AD = 30. Hence GD = 10. Since triangle BGC is right-angled at G, its circumcentre lies
at the midpoint of its hypotenuse, i.e., at D. It follows that DB = 10, and therefore that BC = 20.
Combining this fact with what we deduced above, we see that

x2 + y2 = 100.

From the right-angled triangles BGF and CGE, we obtain

BF2 = BG2 + FG2 = 4x2 + y2,

CE2 = CG2 + EG2 = x2 + 4y2.
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• AD = 30

Figure 1.

Hence
AB2 + AC2 = 4

(
5x2 + 5y2

)
= 20

(
x2 + y2

)
= 2000,

and so
AB2 + AC2 + BC2 = 2400.

Therefore the required answer is 2400/100 = 24.

Solution to problem 3
Given that a, b, c ≥ 4 are integers and

4abc = (a+ 3)(b+ 3)(c+ 3),

to find the value of a+ b+ c. The problem additionally requires that a, b, c are not all equal. However, this
seems an unnecessary requirement; for if a = b = c, then we would obtain 4a3 = (a+ 3)3, implying that
the cube root of 4 is a rational number, which is not the case. Hence a, b, c cannot all be equal. Without
any loss of generality, we may assume that a ≤ b ≤ c. From the given equation we obtain:

4 =

(
1 +

3
a

)(
1 +

3
b

)(
1 +

3
c

)
,

therefore (
1 +

3
c

)3

≤ 4 ≤
(

1 +
3
a

)3

.

Solving these inequalities individually for a and c, we obtain

a ≤ 5.1 ≤ c,

so a ≤ 5 and c ≥ 6. Therefore a ∈ {1, 2, 3, 4, 5}. As we have also been told that a ≥ 4, it follows that
a ∈ {4, 5}. We consider both these possibilities.

• If a = 4, the given equation leads to 16bc = 7(b+ 3)(c+ 3). This may be rewritten as
9bc− 21(b+ c) = 63, which yields (3b− 7)(3c− 7) = 112. It follows that the pair
(3b− 7, 3c− 7) is one of the following possibilities:

(1, 112), (2, 56), (4, 28), (7, 16), (8, 14).
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For b, c to assume integer values, both factors must be of the form 2 (mod 3), hence the
pair (3b− 7, 3c− 7) must be either (2, 56) or (8, 14). Hence the triple (a, b, c) is one of
the following:

(4, 3, 21), (4, 5, 7).

Of these, the first possibility need not be listed as we had supposed that a ≤ b.

• If a = 5, the given equation leads to bc− 2b− 2c− 6 = 0. This may be rewritten as
(b− 2)(c− 2) = 10. It follows that the pair (b− 2, c− 2) is one of the following
possibilities:

(1, 10), (2, 5),

and therefore that the triple (a, b, c) is one of the following:

(5, 3, 12), (5, 4, 7).

Neither of these possibilities needs to be listed as we had supposed that a ≤ b ≤ 4.

Hence the only triple (a, b, c) which satisfies the relations

4 ≤ a ≤ b ≤ c, 4abc = (a+ 3)(b+ 3)(c+ 3)

is (4, 5, 7). This yields a+ b+ c = 16.

Solution to problem 4
A positive integer k is said to be ‘good’ if there exists a partition of the set {1, 2, 3, . . . , 20} into disjoint
proper subsets such that the sum of the numbers in each subset of the partition is k; to find all the good
numbers. Clearly, any such k must be a proper divisor of 210, and since 20 itself must belong to some
subset, we must also have k ≥ 20. These two requirements yield six possible values of k:

21, 30, 35, 42, 70, 105.

We examine each of these six possibilities for feasibility.

• k = 21 is feasible as we can form the following 10 two-element subsets: {1, 20}, {2, 19},
{3, 18}, {4, 17}, …, {8, 13}, {9, 12} and {10, 11}, each with sum 21.

• k = 30 is feasible as we can form the following 7 subsets (note that they are not all of the
same size): {10, 20}, {11, 19}, {12, 18}, {13, 17}, {14, 16}, {4, 5, 6, 15} and
{1, 2, 3, 7, 8, 9}, each with sum 30.

• k = 35 is feasible as we can form the following 6 subsets: {15, 20}, {16, 19}, {17, 18},
{1, 2, 3, 4, 5, 6, 14}, {7, 8, 9, 11} and {10, 12, 13}, each with sum 35.

• k = 42 is feasible as we can form the following 5 subsets: {20, 19, 3}, {18, 17, 7},
{16, 15, 11}, {14, 13, 12, 2, 1} and {10, 9, 8, 6, 5, 4}, each with sum 42.

• k = 70 is feasible as we can form the following: {20, 19, 18, 13}, {17, 16, 15, 14, 8} and
{12, 11, 10, 9, 7, 6, 5, 4, 3, 2, 1}, i.e., 3 subsets, each with sum 70.

• k = 105 is feasible: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} and the complement set
{15, 16, 17, 18, 19, 20} each have sum 105.

We see that all six possibilities yield partitions of the required type. Note that we had to resort to ad hoc
methods to find these partitions. In general, the problem of finding such partitions has no easy solution,
requiring a great amount of computational work.
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Solution to problem 5
To find all prime numbers p such that 1

p

(
2p−1 − 1

)
is a perfect square. See [1].

The ‘little theorem’ of Fermat assures us that if p is any odd prime number, then the quantity
1
p
(
2p−1 − 1

)

is an integer. Here are the values taken by this expression for the first few odd primes p:

p 3 5 7 11 13 17 . . .

(2p−1 − 1)/p 1 3 9 93 315 3855 . . .

The only square numbers we spot in the second row are 1 and 9. We shall show that these are in fact the
only square numbers possible, i.e., the only primes p for which 1

p

(
2p−1 − 1

)
is a perfect square are p = 3

and p = 7.

The stated condition implies that p is odd. Let p = 2k+ 1, where k is a positive integer. Then
2p−1 − 1 = 22k − 1 =

(
2k − 1

) (
2k + 1

)
, so

2p−1 − 1
p

=

(
2k − 1

) (
2k + 1

)
p

.

Now p can be a divisor of only one of 2k − 1, 2k + 1, as these two quantities cannot share any common
factor greater than 1. We consider both the possibilities.

• Suppose that p is a divisor of 2k − 1. Then the quantities
(
2k − 1

)
/p and 2k + 1 are

coprime (indeed, the quantities 2k − 1 and 2k + 1 themselves are coprime, being
consecutive odd numbers), and as their product is a perfect square, each of them must be a
perfect square. That is, we must have for some integers a, b,

2k − 1
p

= a2, 2k + 1 = b2.

The second equality yields b2 − 1 = 2k, hence (b− 1)(b+ 1) = 2k. This implies that
b− 1 and b+ 1 are both powers of 2. Moreover, we also have (b+ 1)− (b− 1) = 2. But
the only two powers of 2 that differ by 2 are 22 = 4 and 21 = 2. Hence it must be that
b+ 1 = 4, i.e., b = 3, which yields k = 3. Hence 2k − 1 = 7, which tells us that p = 7.
So this possibility yields just one prime number, namely p = 7.

• Suppose that p is a divisor of 2k + 1. Then the quantities
(
2k + 1

)
/p and 2k − 1 are

coprime, and as their product is a perfect square, each of them must be a perfect square.
That is, we must have for some integers a, b,

2k + 1
p

= a2, 2k − 1 = b2.

The second equality yields 2k = b2 + 1. As the quantity on the left side is even, b must be
odd, hence b2 ≡ 1 (mod 4), therefore b2 + 1 ≡ 2 (mod 4). This implies that
2k ≡ 2 (mod 4). The only positive integer k for which this is true is k = 1. (If k ≥ 2, then
2k ≡ 0 (mod 4).) Hence k = 1, so p is a divisor of 21 + 1 = 3. Hence p = 3. So this
possibility too yields just one prime number, namely p = 3.

So there are just two prime numbers for which the stated condition is true: 3 and 7.
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