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The Constants of 
Mathematics 
Yet more on the Remarkable Number e

In this article, we continue our exploration of Euler’s
constant e.

A maximising number
An often-asked question is the following:

Which number is larger, π e or eπ?

There is more to this question than meets the eye. To come
upon it, we shall ask a series of similar sounding questions
which can be answered quite easily.

• Which number is larger, 21/2 or 31/3?

Since LCM(2, 3) = 6, we answer the question by
raising both sides to the 6-th power. We have:

(
21/2

)6
= 23 = 8,

(
31/3

)6
= 32 = 9.

Since 9 > 8, it follows that 31/3 > 21/2.

• Which number is larger, 31/3 or 41/4?

Since LCM(3, 4) = 12, we answer the question by
raising both sides to the 12-th power. We have:
(
31/3

)12
= 34 = 81,

(
41/4

)12
= 43 = 64.

Since 81 > 64, it follows that 31/3 > 41/4. (Comment.
There is an easier way to answer this particular question.
See if you can find it!)
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• Which number is larger, 41/4 or 51/5?

Since LCM(4, 5) = 20, we answer the question by raising both sides to the 20-th power. We have:
(
41/4

)20
= 45 = 1024,

(
51/5

)20
= 54 = 625.

Since 1024 > 625, it follows that 41/4 > 51/5.

• Which number is larger, 51/5 or 61/6?

Since LCM(5, 6) = 30, we answer the question by raising both sides to the 30-th power. We have:
(
51/5

)30
= 56 = 15625,

(
61/6

)30
= 65 = 7776.

Since 15625 > 7776, it follows that 51/5 > 61/6.

We can continue in this manner. The operations are easy to perform, though the numbers get
progressively larger.

After a while, we begin to suspect that the sequence
{
n1/n

}
n≥3 is strictly decreasing ; in other words, that

31/3 > 41/4 > 51/5 > 61/6 > 71/7 > 81/8 > · · · . (1)

If this is true, then the largest value taken by n1/n for positive integers n is 31/3. The statement is true, but we
postpone the proof to the end of this section.

Extending the search to half integers. Using the above finding as a starting point, we take up the
following exploration. For which half integer x > 0 does x1/x take its largest value? (A ‘half integer’ is a
number of the form n/2 where n is an integer.) As earlier, we ask a series of similar sounding questions.

• Which number is larger, 1.51/1.5 or 21/2?

Since LCM(1.5, 2) = 6, we answer the question by raising both sides to the 6-th power. We have:
(
1.51/1.5

)6
=

(
3
2

)4

=
81
16

,
(
21/2

)6
= 23 = 8.

Since 8 > 81/16, it follows that 21/2 > 1.51/1.5.

• Which number is larger, 21/2 or 2.51/2.5?

Since LCM(2.5, 2) = 10, we answer the question by raising both sides to the 10-th power. We have:
(
21/2

)10
= 25 = 32,

(
2.51/2.5

)10
=

(
5
2

)4

=
625
16

.

Since 625/16 > 32, it follows that 2.51/2.5 > 21/2.

• Which number is larger, 2.51/2.5 or 31/3?

Since LCM(2.5, 3) = 15, we answer the question by raising both sides to the 15-th power. We have:
(
2.51/2.5

)15
=

(
5
2

)6

=
15625

64
,

(
31/3

)15
= 35 = 243.

Since 15625/64 > 243, it follows that 2.51/2.5 > 31/3. (Note the numbers involved;
15625/64 ≈ 244.14, which means that 31/3 has only ‘just’ been beaten. A narrow victory for
2.51/2.5 …)

Part IV
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In this article, we continue our exploration of Euler’s
constant e.

A maximising number
An often-asked question is the following:

Which number is larger, π e or eπ?

There is more to this question than meets the eye. To come
upon it, we shall ask a series of similar sounding questions
which can be answered quite easily.

• Which number is larger, 21/2 or 31/3?

Since LCM(2, 3) = 6, we answer the question by
raising both sides to the 6-th power. We have:

(
21/2

)6
= 23 = 8,

(
31/3

)6
= 32 = 9.

Since 9 > 8, it follows that 31/3 > 21/2.

• Which number is larger, 31/3 or 41/4?

Since LCM(3, 4) = 12, we answer the question by
raising both sides to the 12-th power. We have:
(
31/3

)12
= 34 = 81,

(
41/4

)12
= 43 = 64.

Since 81 > 64, it follows that 31/3 > 41/4. (Comment.
There is an easier way to answer this particular question.
See if you can find it!)
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• Which number is larger, 41/4 or 51/5?

Since LCM(4, 5) = 20, we answer the question by raising both sides to the 20-th power. We have:
(
41/4

)20
= 45 = 1024,

(
51/5

)20
= 54 = 625.

Since 1024 > 625, it follows that 41/4 > 51/5.

• Which number is larger, 51/5 or 61/6?

Since LCM(5, 6) = 30, we answer the question by raising both sides to the 30-th power. We have:
(
51/5

)30
= 56 = 15625,

(
61/6

)30
= 65 = 7776.

Since 15625 > 7776, it follows that 51/5 > 61/6.

We can continue in this manner. The operations are easy to perform, though the numbers get
progressively larger.

After a while, we begin to suspect that the sequence
{
n1/n

}
n≥3 is strictly decreasing; in other words, that

31/3 > 41/4 > 51/5 > 61/6 > 71/7 > 81/8 > · · · . (1)

If this is true, then the largest value taken by n1/n for positive integers n is 31/3. The statement is true, but we
postpone the proof to the end of this section.

Extending the search to half integers. Using the above finding as a starting point, we take up the
following exploration. For which half integer x > 0 does x1/x take its largest value? (A ‘half integer’ is a
number of the form n/2 where n is an integer.) As earlier, we ask a series of similar sounding questions.

• Which number is larger, 1.51/1.5 or 21/2?

Since LCM(1.5, 2) = 6, we answer the question by raising both sides to the 6-th power. We have:
(
1.51/1.5

)6
=

(
3
2

)4

=
81
16

,
(
21/2

)6
= 23 = 8.

Since 8 > 81/16, it follows that 21/2 > 1.51/1.5.

• Which number is larger, 21/2 or 2.51/2.5?

Since LCM(2.5, 2) = 10, we answer the question by raising both sides to the 10-th power. We have:
(
21/2

)10
= 25 = 32,

(
2.51/2.5

)10
=

(
5
2

)4

=
625
16

.

Since 625/16 > 32, it follows that 2.51/2.5 > 21/2.

• Which number is larger, 2.51/2.5 or 31/3?

Since LCM(2.5, 3) = 15, we answer the question by raising both sides to the 15-th power. We have:
(
2.51/2.5

)15
=

(
5
2

)6

=
15625

64
,

(
31/3

)15
= 35 = 243.

Since 15625/64 > 243, it follows that 2.51/2.5 > 31/3. (Note the numbers involved;
15625/64 ≈ 244.14, which means that 31/3 has only ‘just’ been beaten. A narrow victory for
2.51/2.5 …)
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• Which number is larger, 31/3 or 3.51/3.5?

Since LCM(3, 3.5) = 21, we answer the question by raising both sides to the 21-st power. We have:

(
31/3

)21
= 37 = 2187,

(
3.51/3.5

)21
=

(
7
2

)6

=
117649

64
.

Since 2187 > 117649/64, it follows that 31/3 > 3.51/3.5.

Continuing, we begin to suspect that the largest value taken by n1/n for half integers n > 0 is 2.51/2.5. This
statement too is true, but as earlier we postpone the proof.

Extending the search to quarter integers. We get more ambitious now and extend the exploration to
‘quarter integers’, i.e., numbers of the form n/4 where n is an integer. We ask: For which quarter integer
x > 0 does x1/x take its largest value? Thus:

• Which number is larger, 2.251/2.25 or 2.51/2.5?

Since LCM(2.25, 2.5) = 45, we answer the question by raising both sides to the 45-th power. The
computations are messy but they are straightforward and they show that 2.51/2.5 > 2.251/2.25.

• Which number is larger, 2.51/2.5 or 2.751/2.75?

Since LCM(2.25, 2.75) = 110, we answer the question by raising both sides to the 110-th power.
The computations are extremely messy but they do show that 2.751/2.75 > 2.51/2.5.

Now we suspect that the largest value taken by n1/n for quarter integers n > 0 is 2.751/2.75. The statement is
true, yet again.

Full generalisation. We are now ready to ask the question in its most general form: For which positive real
number x does x1/x assume its largest value? For this, we make use of differentiation. In particular, we use
the fact that the derivative of ln x is 1/x. Let y = x1/x; here x > 0. Then ln y = 1

x · ln x. Differentiating
both sides with respect to x, we get

1
y
· dy

dx
=

x · (1/x)− ln x · 1
x2 ,

∴ dy
dx

=
y(1 − ln x)

x2 . (2)

From the expression in the last line, it follows that the slope of the curve y = x1/x is positive when ln x < 1,
i.e., when 0 < x < e, and negative when ln x > 1, i.e., when x > e. Hence x1/x increases in value as x
arises from 0+ to e and decreases in value thereafter. Therefore: x1/x assumes its largest value when x = e.

This is an unexpected and most pleasing result; a bonus, in fact!

Justifying some statements made earlier. We are now in a position to justify some of the statements
made above on the basis of numerical experimentation. For example, consider the claim that 31/3 is the
largest value of n1/n for positive integers n. To prove this, we make use of the fact, just proved, that x1/x

increases in value as x arises from 0+ to e and decreases in value thereafter. This statement implies that

11/1 < 21/2, 31/3 > 41/4 > 51/5 > 61/6 > 71/7 > · · · . (3)
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It follows from these inequalities that the only possible candidates for the positive integers n for which n1/n

assumes its maximum value are n = 2 and n = 3. But we already know that 31/3 > 21/2. It follows that
31/3 is the maximum value of n1/n for positive integers n.

Comment. In as much as e is a fundamental constant of mathematics, it follows from the above that e1/e

too may be considered to be a fundamental constant of mathematics. Later in this series of articles, we
may be able to dwell on this particular constant.

Solution to the problem posed earlier. We are now in a position to answer the question posed earlier:
Which number is larger, πe or eπ? Since e1/e is the maximum possible value of x1/x for x > 0, it follows
that

e1/e > π1/π
.

It follows immediately from this that
eπ > πe. (4)

Derangements
We close our series of articles featuring e with a discussion of a combinatorial problem: that of counting
‘derangements’.

Consider the string of numbers (1, 2, 3, . . . , n), where n is any positive integer. The n numbers in the
string can be arranged in n! = 1 × 2 × 3 × · · · × n different ways. For example, for n = 3, the 3! = 6
arrangements of (1, 2, 3) are the following: (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1).

Some of these arrangements have the property that every number in the string is in the ‘wrong’ place; i.e., it
has been shifted relative to its original location. An arrangement that has this feature is known as a
derangement.

Among the permutations of (1, 2, 3), there are two derangements: (2, 3, 1) and (3, 1, 2). Please verify for
yourself that in each of the remaining permutations, there is at least one element in its original location.
For example, in (1, 3, 2), element 1 is in its original location, and in (3, 2, 1), element 2 is in its original
location; so these two are not derangements.

For any given value of n, how many of the n! permutations are derangements? It is far from obvious how
we may compute this number. The number itself is considered to be of sufficient significance that it has
been assigned a special symbol, Dn. Mathematicians call it the derangement number. We clearly have
D1 = 0 and D2 = 1, and we have already found that D3 = 2.

Let us now find the value of D4. Since element 1 must not be in its original location, it must be in one of
the positions 2, 3, 4. There are thus 3 possible locations for element 1. If we now compute the number of
derangements in which element 1 is in position 2, then, by symmetry, D4 will be 3 times this number. (It
stands to reason, surely, that the number of derangements in which element 1 is in position 2 will be equal
to the number of derangements in which element 1 is in position 3.) This number is easy to find. In
position 1, we must have 2 or 3 or 4. It turns out that each of these possibilities leads to just one possible
derangement.

• If element 2 is in position 1, then the derangement must be (2, 1, 4, 3).

• If element 3 is in position 1, then the derangement must be (3, 1, 4, 2).

• If element 4 is in position 1, then the derangement must be (4, 1, 2, 3).
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Thus there are 3 derangements in which element 1 is in position 2. It follows from what we said earlier
that D4 = 3 × 3 = 9.

Now let us see how to find the value of D5. The possibilities are many more now, so we will have to be
more skillful in our reasoning.

Since element 1 must not be in its original location, it must be in one of the positions 2, 3, 4, 5. There are
thus 4 possible locations for 1. If we now compute the number of derangements in which element 1 is in
position 2, then, by symmetry (as earlier), D5 will be 4 times this number.

Which element could be in position 1? Clearly it must be one of 2, 3, 4, 5.

If element 2 has come to position 1, then it means that 1 and 2 have swapped positions. To complete the
derangement, elements 3, 4, 5 must occupy positions 3, 4, 5; but all in the ‘wrong place’. The number of
such derangements is clearly D3. (To see why, simply rename 3, 4, 5 as 1, 2, 3.)

Next, suppose that element 2 is not in position 1. Look at the array below carefully.

Element 1
Constraint Not 2 Not 3 Not 4 Not 5

Observe that elements 2, 3, 4, 5 must be placed in the four empty boxes in the first row, keeping in mind
the constraints listed in the second row. But this is exactly the same as the 4-element derangement problem!
(To see why, rename 2, 3, 4, 5 as 1, 2, 3, 4 respectively.) But this means that the number of possibilities is
exactly D4.

We see that among the derangements in which element 1 occupies position 2, there are D3 derangements
in which element 2 occupies position 1, and D4 derangements in which element 2 does not occupy
position 1. Therefore, there are D3 + D4 derangements in all in which element 1 occupies position 2.

Arguing as earlier, there are just as many derangements in which element 1 occupies position 3, and so on.
It follows that

D5∗ = 4 · (D3 + D4) ,

i.e., D5 = 4 × (2 + 9) = 44.

A general recursive relation. The argument described above generalises easily. Let n be a positive integer.
Consider the derangements of (1, 2, 3, . . . , n). Arguing as earlier, we find that the number of
derangements is equal to (n − 1) times the number of derangements in which element 1 occupies
position 2.

Next, we subdivide the derangements in which element 1 occupies position 2 into two categories: those in
which element 2 occupies position 1, and those in which element 2 occupies some other position.
Repeating the argument made earlier, we deduce that there are Dn−2 derangements of the first kind and
Dn−1 derangements of the second kind. Hence there are Dn−2 + Dn−1 derangements in all in which
element 1 occupies position 2. It follows that

Dn = (n − 1) · (Dn−2 + Dn−1) . (5)

This kind of relation, in which the terms of a sequence are expressed in terms of the preceding terms by
some formula, is termed a recursion relation. The most well-known such relation is, of course, that
obeyed by the Fibonacci sequence.
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The above relation permits us to compute the derangement numbers very easily. We give below the first
few terms of the sequence of derangement numbers.

n 1 2 3 4 5 6 7 8 9 10 · · ·
Dn 0 1 2 9 44 265 1854 14833 133496 1334961 · · ·

Connection with e. At this point, the reader must be impatiently asking: All this is very well, but what do
the derangement numbers have to do with e? Why is this topic being discussed in an article about e? Well,
here comes the connection ….

As noted above, the formula that we have found for Dn is a recursion relation; in order to find any
particular derangement number, we would need to compute all the derangement numbers that precede it.
But we may want a formula for Dn that computes its value directly in terms of n and not in terms of the
preceding derangement numbers. Is there such a formula? There are indeed many such formulas, and
perhaps the most surprising of these is the following:

Dn = the integer closest to
n!
e
. (6)

The following array shows this formula in action.

n 1 2 3 4 5 6 7 8 · · ·
Dn 0 1 2 9 44 265 1854 14833 · · ·

n! /e 0.37 0.74 2.21 8.83 44.15 264.87 1854.11 14832.9 · · ·

The formula is indeed an astonishing one. Note that it says ‘integer closest to’. This means that it is not a
case of uniformly rounding down or uniformly rounding up. You may well wonder how one might ever
prove such a formula!

But it isn’t as hopeless as that. Let us see how far we can get by using the recursion relation found above.
Define a new sequence f(n) by the relation

f(n) =
Dn

n!
.

From this we get Dn = n! ·f(n). The relation Dn = (n − 1) · (Dn−2 + Dn−1) when rewritten in terms of
the f-sequence yields the following:

n! f(n) = (n − 1) ·
(
(n − 1)! ·f(n − 1) + (n − 2)! ·f(n − 2)

)

= (n!−(n − 1)! ) · f(n − 1) + (n − 1)! ·f(n − 2),

∴ f(n) =
(

1 − 1
n

)
f(n − 1) +

1
n
· f(n − 2),

∴ f(n)− f(n − 1) = −1
n
·
(
f(n − 1)− f(n − 2)

)
. (7)

We have discovered something quite remarkable. Let the sequence u(n) be defined as follows:

u(n) = f(n)− f(n − 1), n ≥ 2. (8)

Then we have proved the following:

u(n) = −1
n
· u(n − 1). (9)

This relation enables us to find a formula for u(n) in terms of n. From this, we will find a formula for f(n)
in terms of n.
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We first compute the initial values of the f-sequence, and from these the initial values of the u-sequence.
The computations in the array below are self-explanatory

n 1 2 3 4 5 6 7 8 · · ·
Dn 0 1 2 9 44 265 1854 14833 · · ·

f(n) 0
1
2

1
3

3
8

11
30

53
144

103
280

2119
5760

· · ·

u(n)
1
2

−1
6

1
24

− 1
120

1
720

− 1
5040

1
40320

· · ·

It is easy to guess from the last line that

u(n) =
(−1)n

n!
, (10)

and this may be proved using relation (9) and the principle of induction. We shall leave the details of the
proof to the reader. (The proof is straightforward.)

From (10) and (8), we can prove (again, using induction) that

f(n) = 1 − 1
1!

+
1
2!

− 1
3!

+ · · ·+ (−1)n

n!
. (11)

As earlier, we shall leave the details of the proof to the reader.

Since f(n) = Dn/n!, relation (11) yields a formula for the n-th derangement number:

Dn = n!
(

1 − 1
1!

+
1
2!

− 1
3!

+ · · ·+ (−1)n

n!

)
. (12)

Now we begin to see the connection with e. We are familiar with the exponential series

ex = 1 +
x
1!

+
x2

2!
+

x3

3!
+ · · · =

∞∑
k=0

xk

k!
,

from which we obtain (by putting x = −1) the following infinite series for 1/e:

1
e
= 1 − 1

1!
+

1
2!

− 1
3!

+ · · ·+ (−1)k

k!
+ · · · . (13)

It follows from (12) and (13) that Dn ≈ n! /e for large values of n. We could stop here, but we wish to
prove the stronger statement that Dn is equal to the integer closest to n! /e for all positive integers n. More
work is needed to establish this.

The infinite series in (13) is an example of an alternating series whose terms decrease in absolute value and
converge to 0. (The terms alternate in sign, hence the name. A series with these features always converges.
See [2].) For such a series, it is known that the limiting sum always lies between two consecutive partial
sums. To illustrate what this means, consider the infinite series

1 − 1
2
+

1
4
− 1

8
+

1
16

− 1
32

+ · · · ,

whose limiting sum is 1/(1 + 1/2) = 2/3. The partial sums of the above series are:

1,
1
2
,

3
4
,

5
8
,

11
16

,
21
32

,
43
64

, . . . .

Observe that 2/3 lies between each pair of consecutive partial sums.
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To prove that Dn = the integer closest to n! /e, we reason as follows.We have:

n!
e
= n!

(
1 − 1

1!
+

1
2!

− 1
3!

+ · · ·+ (−1)k

k!
+ · · ·

)
,

which is true by relation (13). This may be rewritten, using (12), as
n!
e
= Dn + an, (14)

where

an =
(−1)n+1

n + 1
+

(−1)n+2

(n + 1)(n + 2)
+

(−1)n+3

(n + 1)(n + 2)(n + 3)
+ · · · . (15)

The series in (15) is an alternating series whose terms decrease in absolute value and tend to 0. This implies
that the limiting sum an is less than 1/(n + 1) in absolute value. Since n ≥ 1, it follows that |an| < 1/2
for all values of n. Since

Dn =
n!
e
+ a quantity which lies strictly between −1

2
and

1
2

(16)

and Dn is an integer, the desired conclusion follows: that Dn is equal to the integer closest to n! /e.

A few ‘crazy’ results
To bring this three-part series of articles on e to a close, we quote (without proof ) a few fascinating results
concerning e. Some of them are so strange that we can only call them crazy.

Arithmetic mean, geometric mean. We all know that the arithmetic mean (AM) of any collection of
positive numbers is greater than or equal to the geometric mean (GM) of that collection. Let us apply this
well-known statement to the collection of numbers 1, 2, 3, . . . , n, where n is any positive integer. Let An
and Gn denote the AM and the GM respectively of this collection. For example, A4 = 5/2 and
G4 = 241/4. How do An and Gn compare with each other when n is extremely large? Here is the
remarkable finding:

lim
n→∞

An

Gn
=

e
2
.

That’s crazy, isn’t it?

Two infinite products for e. To conclude, we exhibit two infinite products for e:

e =
2
1

(
4
3

)1/2 (6 · 8
5 · 7

)1/4 (10 · 12 · 14 · 16
9 · 11 · 13 · 15

)1/8

· · · ,

e = 2
(

2
1

)1/2 (2 · 4
3 · 3

)1/4 (4 · 6 · 6 · 8
5 · 5 · 7 · 7

)1/8

· · · .

Just as crazy! The first of these was proved by Catalan. For the second product, please see [1].
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