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ANANDA BHADURI As I was going through Evan Chen’s Euclidean Geometry for 
Mathematical Olympiads, I came across this remarkable problem.

We are given that ω is a circle with centre O. AB is a 
chord of ω. If a circle is tangent to ω at P (internally) and 
tangent to AB at Q, prove that P,Q and the midpoint of the 
arc AB  not containing P are collinear.

Circles inscribed in segments 
Ananda Bhaduri  

Keywords: Circles, angles, chord, tangent, power of a point, orthogonal circles 

As I was going through Evan Chen’s Euclidean Geometry for Mathematical Olympiads� I �a�e a�ross this re�ar�a��e 
�ro��e�� 

We are given that 𝜔𝜔𝜔𝜔 is a circle with centre O. AB is a chord of 𝜔𝜔𝜔𝜔.If a circle is tangent to 𝜔𝜔𝜔𝜔 at P 
(internally) and tangent to AB at Q, prove that P,Q and the midpoint of the arc 𝐴𝐴𝐴𝐴�̂�𝐴𝐴𝐴 not 

containing P are collinear. 

I wou�� �i�e to �resent a �roo� o� the state�ent using �asi� ang�e hunting an� a�so a �ew o� its �onse�uen�es� �e 
wi�� a�so so�ve a �ro��e� using the te�hni�ues �resente� in this arti��e� 

 
Figure 1 

I start so�ving this �ro��e� �� reasoning �a��war�s� �n�e I have re�u�e� it into a �u�h �ore �onvenient �or�� I 
wi�� �resent a �roo�� 
�et �� �eet the ar� 𝐴𝐴𝐴𝐴�̂�𝐴𝐴𝐴 not �ontaining � at �� �e nee� to �rove that � is the �i��oint o� the ar� A� not �ontaining 
�� �hat is� we nee� to �rove that 
                                                                                 �A���� 
�his re�u�es to �roving that ∠MAB = ∠MBA� �ow� we use the �a�t that ang�es in the sa�e seg�ent are e�ua��  
�in�e ∠ MAB =  ∠MPB an�  ∠MBA =  ∠ MPA� it is su��i�ient to �rove that  

Figure 1

I start solving this problem by reasoning backwards. Once I have 
reduced it into a much more convenient form, I will present a proof.
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Let PQ meet the arc AB  not containing P at 
M. We need to prove that M is the midpoint of 
the arc AB not containing P. That is, we need to 
prove that

MA = MB.

This reduces to proving that ∠MAB = ∠MBA. 
Now, we use the fact that angles in the same 
segment are equal. Since ∠MAB = ∠MPB and  
∠MBA = ∠MPA, it is sufficient to prove that

       
	 ⇔∠MPB = ∠MPA               ………..(1)

We will prove (1) below

Proof:

Observe that O, P and K are collinear, where K is 
the centre of the inscribed circle, O is the centre 
of the outer circle and P is the point of contact.

Since the circle inscribed in the segment is 
tangent to AB at Q,

	 ∠KQA = KQB = 90°             …….(2)

We compute ∠MPA and show that it must be 
equal to ∠MPB.

∠MPA is the sum of the two angles ∠MPO and 
∠OPA.

∠MPO is nothing but ∠KPQ

  = ∠KQP              (KP = KQ)

  = 90° – ∠PQB               (from (2))

  = 90° – ∠AQM
∠OPA = 180° –  ∠POA 

2
    (from the isosceles triangle POA)

  = 90° – ∠PMA              (∠POA = 2 ∠PMA)

Adding these two values,
∠MPA = ∠MPO + ∠OPA

     = 180° – (∠AQM + ∠PMA)
     = ∠MAB

     = ∠MPB      (angles in the same segment)

And this proves (1).

 

Now, we come to our first corollary:
The length of the tangent from M to 
any circle inscribed in segment AB is 
equal to MA.

We begin by using the fact that triangles MPA 
and MAQ are similar. This is because ∠MPA = 
∠MAB = ∠MAQ (as proved earlier) and ∠PMA = 
∠QMA.

Similarity yields the following ratio:
MQ MA
MA MP

=

This leads to:

MP · MQ = MA 
2

Observe that MP ∙ MQ is the power of point 
M with respect to the inscribed circle. (The 
definitions of words written in bold can be found 
in the appendix.) But the power of a point of a 
point outside the circle is equal to the square of 
the length of the tangent from the point to the 
said circle.

If the length of the tangent from M to the 
inscribed circle is t. Then,

MA2 = MP · MQ = t2

What does this result imply? The length of the 
tangent from M to the circle is fixed by the segment 
AB and does not depend on the position of the circle 
within the segment.

Now for our second corollary:

Let 𝛾𝛾 be the circle passing through A and 
B with centre M and radius MA or MB. 
Let 𝛾𝛾 intersect the inscribed circle at X and 
Y and intersect PQ at I. Then,

i. MX and MY are tangent to the inscribed 
circle.

ii. I is the incentre of triangle PAB.

The first part is the first corollary in disguise. In 
fact, the inscribed circle and γ are orthogonal 
circles.
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Figure 2

What about the second part? Since I lies on PM 
(which is the bisector of ∠APB), it is sufficient to 
prove that IB is the bisector of ∠PBA.

Since MB = MI,

  ∠MBI = ∠MIB           (2)

∠MBI = ∠MBA + ∠ABI 
    = ∠MPA + ∠ABI

(angles in the same segment)

    =1/2∠APB + ∠ABI       (MP bisects ∠APB)

∠MIB = ∠IPB + ∠IBP
(exterior angle of a triangle)

    = ∠MPB + ∠IBP

    = 1/2∠APB + ∠IBP

Substituting these values in (2),

1/2∠APB + ∠ABI = 1/2∠APB + ∠IBP

⇒	∠ABI = ∠IBP

Hence, IB bisects ∠PBA.

I would like to present a problem from the IMO 
1992 shortlist which was proposed by Shailesh 
Shirali. This problem appeared in the article 
on Mathematical Olympiads in India in the 
November edition.

Problem 1
Two circles G1 and G2 are inscribed in a segment of 
circle G and touch each other externally at a point 
W. Let A be a point of intersection of a common 
internal tangent to G1 and G2 with the arc of the 
segment and let B and C be the endpoints of the 
chord. Prove that W is the in-centre of triangle ABC.

⇒ ∠ABI = ∠IBP 
Hence, IB bisects ∠PBA. 
 
I would like present a problem from the I�� 1��� shortlist which was proposed by �hailesh �hirali. �his problem 
appeared in the article Mathematical Olympiads in India in the �ovember edition. 
Problem 1 

Two circles G1 and G2 are inscribed in a segment of circle G and touch each other externally at a point W. Let A be a 
point of intersection of a common internal tangent to G1 and G2 with the arc of the segment and let B and C be the 
endpoints of the chord. Prove that W is the in-centre of triangle ABC. 

 
Figure 3 

(Note from the editor: For those unfamiliar with the term ‘internal tangent,’ an internal tangent to two circles is a 
common tangent to the two circles such that the two circles lie on opposite sides of the tangent line. In the case of 
an external tangent, the two circles lie on the same side of the tangent line. Wikipedia uses the terms ‘inner tangent’ 
and ‘outer tangent’ but these are non�standard terms.) 
We define point � to be the intersection of the common internal tangent of G1 and G2 and the circle �. �he figure 
suggests that � is the midpoint of the arc 𝐵𝐵𝐵𝐵�̂�𝐵𝐵𝐵 not containing A. �o prove this, we will re�uire this lemma: 

The tangents from a point P to G1 and G2 are equal if and only if it lies on the common 
internal tangent to G1 and G2. 

If P is on the common internal tangent, the tangent from P to both the circles is e�ual to the length PW. �herefore, 
we need to prove that the tangents from a point not on the common internal tangent to G1 and G2 cannot be e�ual. 
Here is a brief sketch of the proof. �he reader is expected to fill in the details. 

 Let there be a point P’ not on the common internal tangent such that the tangents from P’ to both the circles 
are e�ual. 

 Let P’W meet G1 and G2 at � and L respectively. Prove that � and L are distinct. 
 Consider the powers of point P’ (see appendix 1) with respect to both the circles. Prove that they must be 

une�ual. 

Figure 3

(Note from the editor: For those unfamiliar with 
the term ‘internal tangent,’ an internal tangent 
to two circles is a common tangent to the two 
circles such that the two circles lie on opposite 
sides of the tangent line. In the case of an 
external tangent, the two circles lie on the same 
side of the tangent line. Wikipedia uses the terms 
‘inner tangent’ and ‘outer tangent’ but these are 
non-standard terms.)

We define point M to be the intersection of 
the common internal tangent of G1 and G2 and 
the circle G. The figure suggests that M is the 
midpoint of the arcBC not containing A. To 
prove this, we will require this lemma:

The tangents from a point P to G1 and 
G2 are equal if and only if it lies on the 
common internal tangent to G1 and G2.

If P is on the common internal tangent, the 
tangent from P to both the circles is equal to 
the length PW. Therefore, we need to prove that 
the tangents from a point not on the common 
internal tangent to G1 and G2 cannot be equal.
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Here is a brief sketch of the proof. The reader is 
expected to fill in the details.

•  Let there be a point P’ not on the common 
internal tangent such that the tangents 
from P’ to both the circles are equal.

• Let P’W meet G1 and G2 at K and L 
respectively. Prove that K and L are distinct.

•  Consider the powers of point P’ (see 
appendix 1) with respect to both the 
circles. Prove that they must be unequal.

•  Since the power of a point with respect to 
a circle is the square of the length of the 
tangent, we get a contradiction.

How can we use this lemma? According to the 
first corollary, the tangent from the midpoint of 
the arcBC not containing A to circles G1 and G2 
must be equal. Hence, the midpoint lies on the 
common internal tangent and is point M.

This also implies that the tangent from M to both 
the circles is equal to MW. But it is also equal to 
MA (from the first corollary). 

Therefore, we can construct a circle centred at M 
with radius MW which passes through A and B. 
Now the figure of the problem resembles that of 
the second corollary. We can use the second part 
of the second corollary to complete the proof. 

Appendix 1: Power of a point
There are many ways to define the power of a 
point. For a point P and a circle with centre O 
and radius r, the power of point P is the quantity 
OP 

2 – r 
2. If P is outside the circle, the power of 

point P is the length of the tangent from P to 
the circle squared. If a line through P intersects 
the circle at A and B, then the power of point P 
is also PA · PB (Note that the power of a point 
inside a circle is negative according to the first 
definition. But the third definition suggests that 
it is positive. The power of a point inside a circle 
is indeed negative and PA · PB is the absolute 
value of the power of a point.)

Here, we only prove that the three definitions are 
equal for a point outside a circle.

Suppose PT is the tangent from P to the circle.

It is obvious from the Pythagoras theorem that 
PT 

2 = OP 2 – r 2

We have to prove that PT 2 = PA ∙ PB.

Let TC be a diameter of the circle.

This implies that ∠TAC is a right angle.

⇒	∠TCA = 90° – ∠ATC

But ∠CTP is also a right angle,

⇒	∠ATP = 90° – ∠ATC

⇒	∠ATP = ∠TCA = ∠TBA

 �in�e the p��er �� a p�int �ith respe�t t� a �ir�le is the s��are �� the length �� the tangent� �e get a 
��ntra�i�ti�n. 

��� �an �e �se this lemma� A���r�ing t� the �irst ��r�llar�� the tangent �r�m the mi�p�int �� the ar�  𝐵𝐵𝐵𝐵�̂�𝐵𝐵𝐵  n�t 
��ntaining A t� �ir�les G1 an� G2 m�st �e e��al. �en�e� the mi�p�int lies �n the ��mm�n internal tangent an� is 
p�int �. 
This als� implies that the tangent �r�m � t� ��th the �ir�les is e��al t� ��. ��t it is als� e��al t� �A ��r�m the �irst 
��r�llar��.  
There��re� �e �an ��nstr��t a �ir�le �entre� at � �ith ra�i�s �� �hi�h passes thr��gh A an� �. ��� the �ig�re �� 
the pr��lem resem�les that �� the se��n� ��r�llar�. �e �an �se the se��n� part �� the se��n� ��r�llar� t� ��mplete 
the pr���.  

Appendix 1: Power of a point 

There are man� �a�s t� �e�ine the p��er �� a p�int. ��r a p�int � an� a �ir�le �ith �entre � an� ra�i�s 𝑟𝑟𝑟𝑟� the p��er �� p�int � 
is the ��antit� 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂2 − 𝑟𝑟𝑟𝑟2. �� � is ��tsi�e the �ir�le� the p��er �� p�int � is the length �� the tangent �r�m � t� the �ir�le s��are�. 
�� a line thr��gh � interse�ts the �ir�le at A an� �� then the p��er �� p�int � is als�  𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃 ∙ 𝑂𝑂𝑂𝑂𝐵𝐵𝐵𝐵 ���te that the p��er �� a p�int 
insi�e a �ir�le is negati�e a���r�ing t� the �irst �e�initi�n. ��t the thir� �e�initi�n s�ggests that it is p�siti�e. The p��er �� a 
p�int insi�e a �ir�le is in�ee� negati�e an�  𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃 ∙ 𝑂𝑂𝑂𝑂𝐵𝐵𝐵𝐵.is the absolute value �� the p��er �� a p�int.� 
�ere� �e �nl� pr��e that the three �e�initi�ns are e��al ��r a p�int ��tsi�e a �ir�le. 

 
Figure 4 

��pp�se �T is the tangent �r�m � t� the �ir�le. 
�t is ���i��s �r�m the ��thag�ras the�rem that 𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃2 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂2 − 𝑟𝑟𝑟𝑟2 
�e ha�e t� pr��e that 𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃2 = 𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃 ∙ 𝑂𝑂𝑂𝑂𝐵𝐵𝐵𝐵. 
�et TC �e a �iameter �� the �ir�le. 
This implies that ∠TAC is a right angle. 

⇒ ∠𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃 = 90° − ∠𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵 

Figure 4

Also,

∠APT = ∠BPT

The last two equations imply that triangles PAT 
and PBT are similar.

We get this ratio from similarity:
PA PT
PT PB

=

This gives us the required result.
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Appendix 2: Orthogonal circles
Let Ω and ω be two circles intersecting with 
centres O1 and O2 respectively which intersect at 
A and B. If O1A and O1B are tangents to ω, the 
two circles are orthogonal. In fact, this implies 
that O2A and O2B are tangents to Ω. Orthogonal 
circles have lots of nice properties. We encourage 
the reader to find them. For example, one 
interesting feature is that the points O1, O2, A, 
B lie on a circle whose centre is the midpoint of 
segment O1O2.The proof is trivial and is left to 
the reader.

We conclude this appendix with a question: What 
is the power of point O1 with respect to ω? What 
about that of O2 with respect to Ω?

But ∠CTP is also a right angle, 
⇒ ∠𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 90° − ∠𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 
⇒ ∠𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ∠𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴 = ∠𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴 

�lso, 
∠𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ∠𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

The last t�o e�uations i��l� that triangles P�T an� PBT are si�ilar� 
�e get this ratio �ro� si�ilarit�� 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 

This gi�es us the re�uire� result� 

Appendix 2: Orthogonal circles 

�et Ω an� ω �e t�o �ir�les interse�ting �ith �entres �� an� �� res�e�ti�el� �hi�h interse�t at � an� B� �� ��� an� ��B are 
tangents to ω, the t�o �ir�les are orthogonal� �n �a�t, this i��lies that ��� an� ��B are tangents to Ω� �rthogonal �ir�les ha�e 
lots o� ni�e �ro�erties� �e en�ourage the rea�er to �in� the�� �or e�a��le, one interesting �eature is that the �oints ��, ��, �, 
B lie on a �ir�le �hose �entre is the �i��oint o� seg�ent �����The �roo� is tri�ial an� is le�t to the rea�er��

 
Figure 5 

�e �on�lu�e this a��en�i� �ith a �uestion� �hat is the �o�er o� �oint �� �ith res�e�t to ω? �hat a�out that o� �� �ith res�e�t 
to Ω? 
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