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RAHIL MIRAJ

Radii of In-circle and 
Ex-circles of a Right- 
Angled Triangle

Consider a right triangle ABC, with the right
angle at vertex C (Figure 1). Let the lengths of the
tangents from the vertices to the incircle be x, y, z

(AQ = AR = x; BP = BR = y; CP = CQ = z). Then
AB = c = x + y, CA = b = z + x, BC = a = y + z.

We claim the following relations for the radii of the incircle
and the three ex-circles:

• Radius of incircle, r = z.

• Radius of A ex-circle, ra = y.

• Radius of B ex-circle, rb = x.

• Radius of C ex-circle, rc = x + y + z.

Geometric Proof. Let ABC be a triangle with �C = 90◦
(Figure 1). Let I be its incentre and let IA, IB, IC respectively
be the three ex-centres. Let P,Q,R be the points of contact
of the tangents to the incircle from the vertices of △ABC.
Let D,E, F,G, S,T be the points of contact of the ex-circles
with the sidelines of the triangle, as shown in Figure 1. Let
AQ = x; BP = y and CP = z; then we also have AR = x;
BR = y and CQ = z. Hence AB = c = x + y;
BC = a = y + z and AC = b = z + x.

Since �C = 90◦, it follows that IQCP is a square; therefore
r = z.

For the same reason (�C = 90◦), both IBDCE and ICFCG
are squares.
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In this article, I provide a 
relation connecting the 
lengths of the tangents from 
the vertices of a right-angled 
triangle to its incircle and 
ex-circles, in terms of its 
inradius and ex-radii. I give a 
geometric proof as well as an 
analytic proof. 

A standard result which will 
be used repeatedly is the 
following: Given a circle 
and a point outside it, the 
lengths of the two tangents 
that can be drawn from 
the point to the circle have 
equal length. A list of more 
such results and formulas of 
relevance is provided at the 
end of the article.

The following nomenclature 
should be noted. Other than 
the incircle of a triangle, 
three other circles can 
be drawn that touch the 
sidelines of a triangle. These 
are called the ex-circles of 
the triangle. The ex-circle 
opposite vertex A is known 
as the ‘A ex-circle’, and 
likewise for the two other 
ex-circles. The radius ra of 
the A ex-circle is called the 
‘A ex-radius’, and similarly 
for the radii of the two other 
ex-circles.
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• x = AQ = AR

• y = BP = BR

• z = CP = CQ

• BC = y + z

• AC = z + x

• AB = x + y

Figure 1. Triangle ABC with its incircle and ex-circles

Now we shall show that AE = CQ. This is a well-known property, but we include the proof here. Starting
with CQ = z, we obtain the following in succession:

AQ = b − z, AR = b − z, BR = c − (b − z) = c − b + z, BP = c − b + z.

Since we also have CP = z, it follows that z + (c − b + z) = a, which yields 2z = a + b − c. So we have
2CQ = a + b − c.

Next: the length of the tangent from B to the B ex-circle is BC + CE = a + b − AE. This length is also
given by BA + AE = c + AE. Hence we have c + AE = a + b − AE, giving 2AE = a + b − c. This shows
that AE = CQ. We similarly have CP = BT and AS = BR.

From the relation AE = CQ we obtain:

rb = EC = AC − AE = AC − CQ = AQ,

i.e., rb = x. In the same way, we prove that ra = y.

Finally, we have:

rc = FC = FA + AC = AS + (x + z) = BR + (x + z),

i.e., rc = x + y + z. All the claims made earlier have now been proved
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Analytic Proof. We use the following known fact about right-angled triangles (to see why this is true,
please see the boxed item below): if △ABC is right-angled at C and its sides are a, b, c, then there exists a
positive real number t < 1 such that

a : b : c = 2t : 1 − t2 : 1 + t2.

Hence there exists a positive constant k such that

a = 2kt, b = k
(
1 − t2

)
, c = k

(
1 + t2

)
.

Now recall what we had proved above: 2z = a+ b− c. In the same way we may show that 2x = b+ c− a
and 2y = c + a − b (but we ask you to verify these relations for yourself ). Let s be the semi-perimeter and
Δ the area of △ABC. We now have:

b + c − a = 2k(1 − t), c + a − b = 2kt(1 + t), a + b − c = 2kt(1 − t).

Hence we have,

x = k(1 − t), y = kt(1 + t), z = kt(1 − t),

and so:

x + y + z = k(1 + t),

i.e., s = k(1 + t); and

Δ =
1
2

ab = k2t
(
1 − t2

)
.

We also know that Δ = rs. Hence:

r =
Δ
s
= kt(1 − t) = z,

as claimed. Another such relation is Δ = ra(s − a). This yields:

ra =
Δ

s − a
= kt(1 + t) = y.

Similarly, Δ = rb(s − b), so

rb =
Δ

s − b
= k(1 − t) = x,

and Δ = rc(s − c), so

rc =
Δ

s − c
= k(1 + t) = x + y + z = s.
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Justification of claim made about right-angled triangles

We prove the following claim about right-angled triangles: if △ABC is
right-angled at C and its sides are a, b, c, then there exists a positive
real number t < 1 such that

a : b : c = 2t : 1 − t2 : 1 + t2.

Proof. As a triangle is right-angled at C, it follows that a2 + b2 = c2, and
therefore that a2 = c2 − b2 = (c − b)(c + b). Hence:

a
c + b

=
c − b

a
= t, say.

It is obvious that t is positive, and t < 1 follows from the triangle
inequality (a < c + b). The above two equalities now yield:

c + b =
a
t
,

c − b = at.

From these two equalities, we get:

2c =
a
t
+ at, 2b =

a
t
− at.

Hence:
c
a
=

1 + t2

2t
,

b
a
=

1 − t2

2t
.

The stated claim now follows.
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