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Joining the Dots…

In our last Low Floor High Ceiling article, we had looked at 
Squaring the Dots… a series of questions on counting the dots 
inside squares of different sizes and orientations drawn on dotted 

paper with the dots as lattice points. The focus of the activity was to 
tilt squares and try to find a general formula for the number of dots 
inside the square of a particular tilt, as the side of the square changed.

Naturally, a second question arose. Would it be possible to predict 
the number of dots inside the square as the tilt changed? Initially 
it seemed almost impossible, but a change in perspective helped 
in making sense of this task. And so we moved from counting to 
generalization.

With the type of squares shown in Figure 1, it is very easy to predict 
the number of dots in each square. Here we can easily see that for a 
square with side length n i.e. with n + 1 dots on one side, the number 
of dots enclosed is (n – 1)2. Putting this in words, the number of dots 
enclosed in a non-tilted square is the number of dots on one side 
reduced by 2 and then squared.
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Figure 1. Squares with one side of slope 0
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As we explored squares of increasing tilt, this is the sequence of thought that emerged. As you look at 
the pictures on the left (Figure 2.1, 3.1, etc.), you will see how difficult it is to get a general formula. 
But with the picture on the right (Figure 2.2, 3.2, etc.), you might even be able to arrive at a proof 
without words!

Figures 2.1 and 2.2 show squares of different sizes but all of them have a side of slope 1 (the other 
of slope -1).  And all of them can be tiled with similar squares of side length 2 . Each of the tiling 
squares encloses 1 dot and there is 1 dot at each point of intersection of the tiling lines. For a square of 
side length n 2 , there are n2 tiling squares (each with 1 dot inside) and (n – 1) tiling lines along each 
direction, which intersect at (n – 1)2 dots. So the number of dots inside each square with a side of slope 1 
and length n 2  is n2 + (n – 1)2.

Does this continue for squares of greater tilt? Let us explore further.

Figures 3.1 and 3.2 show squares of different sizes but all of them have one side of slope 2 (the other 
of slope -1/2).  And all of them can be tiled with similarly inclined squares of side length 5 . Each of 
the tiling squares encloses 4 dots and there is 1 dot at each point of intersection of the tiling lines. For 
a square of side length n 5 , there are n2 tiling squares (each with 4 dots inside) and (n – 1) tiling lines 
along each direction, which intersect at (n – 1)2 dots. So the number of dots inside each outer square is 
4n2 + (n – 1)2.

You can see from the figure below for a square with a side of slope 3 that we are beginning to arrive at a 
general formula.
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Using dotted paper or GeoGebra, try drawing squares with a side of slope 4 with different side lengths 
and see if your conjecture regarding a formula is validated. Did you predict the number of dots and was 
your prediction correct?

Before we proceed further, let us try to make sense of two things. 

i. How many dots are there in a tiling square in which the slope of one side is m, a natural number?

ii. How many tiling lines are there in a tilted square which has n + 1 dots on each side?

Question 1:
Consider the smallest tilted square of slope m. This is formed by going up by m units and across by 1 
unit. Enclose each of these squares in the smallest non-tilted square possible. To do this, we go down 
from vertex A by one unit and across from vertex B by m units. In each case the side of the non-tilted 
square becomes m + 1 units with m + 2 dots on each side. The number of dots enclosed in such a square is 
therefore m2 (decrease the number of dots on the side by 2 and then square as explained above).  The four 
right-angled triangles outside the tilted square and within the non-tilted square will not contain any dot 
(except along the sides) because from each vertex of the tilted square we simply go out to the next dot to 
get the enclosing non-tilted square. So the number of dots in the smallest tilted square of slope m (where 
m is a natural number) is m2.
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Question 2:
In a tilted square with n + 1 dots on each side, there are n2 tiling squares. There will be n + 1 – 2 i.e.  
n – 1 tiling lines in one direction and n – 1 tiling lines in the perpendicular direction. Hence there will 
be (n – 1)2 intersections.

Let us summarize our findings in a table

Slope of 
1 side Side length

Number of dots 
in each tiling 

square

Number of 
tiling squares

No of 
intersections of 

tiling lines

Total number of dots in 
the tilted square

1 n 2 1 n2 (n – 1)2 n2 + (n – 1)2

2 5n 4 n2 (n – 1)2 4n2 + (n – 1)2

3 10n 9 n2 (n – 1)2 9n2 + (n – 1)2

4 17n 16 n2 (n – 1)2 16n2 + (n – 1)2

m ( )2 1n m + m2 n2 (n – 1)2 m2n2 + (n – 1)2

Please note that m and n are natural numbers here.

If m is a positive rational number of the form p/q, 
where p and q are co-prime with p > q, then what 
would the generalized formula be for the number of 
dots? Of course, if either p or q is 1, then the above 
holds. Let us explore what happens if neither p, nor 
q is equal to 1. In Figure 6.1, we look at a tilted 
square of slope 3/2. We see that it too can be tiled, 
in this case into 4 smaller squares. However, this 
time, the tiling squares do not have dots in a square 
array inside. 

The smallest lattice point square of slope 3/2 is 
shown in Figure 6.2. The enveloping non-tilted 
outer square is formed by going 3 units up from A 
and 2 units to the left from B. It is of side 3 + 2 = 5 
units and has (3 + 2) + 1 = 6 dots along each side and therefore  
(6 – 2)2 = 16 dots inside.

If we consider the 3 × 2 rectangle drawn with A and B as opposite 
vertices, we see that the diagonal AB divides it into 2 congruent 
triangles each with one dot inside. The rectangle has (3 + 1) dots 
on one side and (2 + 1) dots on the other. So it has (3 + 1 – 2) 
× (2 + 1 – 2) = 2 dots inside, with 1 dot on either side of the 
diagonal AB. Since the four triangles within the outer non-tilted 
square and the inner tilted square are congruent, the number of 
dots inside are all equal to 1. So the total number of dots inside 
the tilted square are 16 – 4 × 1 = 12 dots. 
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In Figure 6.1, there are 4 such squares; so the total number of 
dots inside is 48 to which we add one dot at the intersection 
of the tiling lines. This gives us a total of 49 dots.

Figure 7 shows a tilted square with one side of slope 5/4. 
See if the same reasoning holds in this case too. Can we 
begin to generalise?

For a tilted square of slope p/q, where p and q are natural 
numbers which are prime to each other, the outer enveloping 
non-tilted square will be of length (p + q) units and have  
(p + q + 1) dots on each side. So the number of dots inside 
will be (p + q – 1)2. The p by q rectangle will have (p – 1) 
(q – 1) dots inside and so the number of dots inside the 
smallest tilted lattice square with one side of slope p/q is  
(p + q – 1)2 – 4 × ( )( )1 1

2
p q− −  = p2 + q2 + 1 + 2pq – 2q – 2p – 

2pq + 2q + 2p – 2 = p2 + q2 – 1. Note that this formula is symmetric in p and q. 

We can then calculate the total number of dots enclosed in bigger squares of slope p/q. 

Let us summarize our findings in a table

Slope of 
1 side Side length

Number of 
dots in each 
tiling square

Number of 
tiling squares

No of 
intersections of 

tiling lines

Total number of dots 
enclosed by the tilted 

square

2/3 n√13 12 n2 (n – 1)2 12n2 + (n – 1)2

3/2 n√13 12 n2 (n – 1)2 12n2 + (n – 1)2

5/4 n√41 40 n2 (n – 1)2 40n2 + (n – 1)2

2/1 n√5 4 n2 (n – 1)2 4n2 + (n – 1)2

p/q n(√(p2 + q2) p2 + q2 - 1 n2 (n – 1)2 (p2 + q2 – 1)n2 + (n – 1)2

Note that this formula works even when p or q is 1, i.e., it is a general formula for non-negative integer 
values of p and q. Of course, with the constraint that q ≠ 0.

Also note that this general formula is always of the form 4k or 4k + 1 (we had earlier justified this using 
the symmetries of a square). Let us consider the subcases:

a. n even i.e. n = 2l for some natural number l: then (p2 + q2 – 1)n2 = 4(p2 + q2 – 1)l 
2 and (n – 1)2 =  

4(l 
2 – l) + 1, therefore (p2 + q2 – 1)n2 + (n – 1)2 is of the form 4k + 1

b. n odd i.e. n = 2l – 1: then n2 is of the form 4k + 1 and (n – 1)2 is of the form 4k, so we need to 
consider the factor p2 + q2 – 1 – note that we need this factor to be of the form 4k or 4k + 1

i. p, q both odd: then p2 and q2 both would be of the form 4k + 1, so p2 + q2 – 1 would be of the 
form 4k + 1

ii. p odd, q even or vice-versa: then p2 + q2 – 1 would be of the form 4k

iii. p, q both even: we leave it to the reader to figure out why this case is not possible!
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Further note the possible numbers of dots till 20:

No. of dots p q n No. of dots p q n

1 1 1 1 4 2 1 1
5 1 1 2 9 3 1 1

12 3 2 1 13 1 1 3
16 4 1 1 17 2 1 2

8 and 20 are missing since there are no (p, q, n) that can make them!

Conclusion
In mathematics, a single question can spark off a series of investigations. Counting is one of the most 
elementary mathematical operations, taught at the beginning of primary school. Generalisation is 
a powerful mathematical technique. When counting becomes tedious, the thinking student tries to 
generalise. But the process needs to be carefully thought out, constraints and exceptions need to be kept 
in mind. Above all, the process needs to make sense to the student. We hope this train of thought makes 
sense to you, readers.
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= 11a1 + 99a2 + 1001a3 + 9999a4 + . . .+ (102n−1 + 1)a2n−1 + (102n − 1)a2n

=
∑n

k=1 [(10
2k−1 + 1)a2k−1 + (102k − 1)a2k]

Now 102k−1 + 1 = (10 + 1)(102k−2 − 102k−3 + . . . .+ 1) = 11b for some natural number b, i.e., 102k−1

+ 1 is divisible by 11. [This step of successive decomposition may be easier for students to understand if
we use an example say

105 + 1 = 10 · 104 + 1 = 11 · 104 − 1 · 104 + 1

= 11 · 104 − 10 · 103 + 1 = 11 · 104 − 11 · 103 + 1 · 103 + 1

= 11 · 104 − 11 · 103 + 10 · 102 + 1 = 11 · 104 − 11 · 103 + 11 · 102 − 102 + 1

= 11 · 104 − 11 · 103 + 11 · 102 − 10 · 10 + 1

= 11 · 104 − 11 · 103 + 11 · 102 − 11 · 10 + 1 · 10 + 1

= 11 · 104 − 11 · 103 + 11 · 102 − 11 · 10 + 11 − 1 + 1 = 11(104 − 103 + 102 − 10 + 1)

which is a multiple of 11.

From this step, students may find it easier to generalise. They could also investigate if 10n + 1 is a multiple
of 11 for all n or only odd n.]

Similarly 102k − 1 = (102)k − 1 = 100k − 1 = (100 − 1)(100k−1 + . . .+ 1) = 99c for some natural
number c, 102k − 1 is divisible by 99 and hence by 11.

Since N − DADS is divisible by 11, either both N and DADS are divisible by 11 or neither one is; so if
DADS is a multiple of 11 so is the original N, and if DADS is not, neither is N.

Conclusion: Mathematical investigations are perfect for Low Floor High Ceiling activities. Here, we have
described how a simple pattern can be recognized, investigated, played with and generalized. If your
students have enjoyed DADS Rule, do let them try the same strategies with other number patterns; we
hope they rule!

And don’t forget to share your students’ findings with At Right Angles.
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