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Abstract

Grazing Incidence X-ray Diffraction (GIXD) studies of monolayers of biomolecules at

the air-water interface give quantitative information of in-plane packing, coherence lengths of

the ordered (diffracting) domains and orientation of hydrocarbon chains of the model mem-

branes. Rheo-GIXD measurements revel quantitative changes in the monolayer under shear.

Here we report GIXD studies of monolayers of Alamethicin peptide, DPPC lipid and their

mixtures at the air-water interface under the application of steady shear stresses. The Alame-

thicin monolayer and the mixed monolayer show flow jamming transition. On the other hand,

pure DPPC monolayer under the constant stress flows steadily with a notable enhancement of
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area/molecule, coherence length, and the tilt angle with increasing stress, suggesting fusion of

domains during flow. The DPPC-Alamethicin mixed monolayer shows no significant change

in the area/DPPC molecule or in the DPPC chain tilt angle but the coherence length of both

phases (DPPC and Alamethicin) increases suggesting that the domains of individual phases

are merging to bigger size promoting more separation of phases in the system during flow. Our

results show that Rheo-GIXD has the potential to explore in-situ molecular structural changes

under rheological conditions for a diverse range of confined biomolecules at the interfaces.

Introduction

Langmuir monolayer, a molecularly thin film of amphiphilic molecules stabilized on a liquid-

air interface, is an important model system for studying self-organized biological structures such

as cell membranes, lung alveoli, etc and also has important industrial applications like in foam,

emulsion, etc.1–3 A combination of Grazing Incidence X-ray Diffraction (GIXD), specular x-ray

reflectivity (XR) and more recently electrochemical scanning tunneling microscopy (EC-STM)

of Langmuir-Blodgett (LB) monolayers have been used to understand different kinds of phase

transitions, molecular structure and orientation within domains, formation of single layer and bi-

layers.4–8 Mixed systems like lipid-cholesterol and lipid-peptide monolayers have been studied to

probe the interactions of lipids with other molecules and their relative orientation.9–14

Alamethicin is an antimicrobial peptide, produced by many living organisms to defend against

gram-negative and gram-positive bacteria, fungi, enveloped viruses, eukaryotic parasites, and even

tumor cells. Alamethicin isolated from Trichoderma viride has 20 residue peptides with predom-

inantly α-helical structure. In the helical conformation, the length of the molecule is 33 Å. The

helix oriented parallel to the interface is called the surface (S) state. If it is inserted into the lipid

matrix with the helical axis perpendicular to the interface, it is called the inserted (I) state. The

aggregation properties and flow behavior of Alamethicin in the form of Langmuir monolayer were

studied using fluorescence microscopy and surface rheology.15 Fluorescence microscopy showed

the coexistence of liquid-expanded and solid phases with the area fraction of solid domains increas-
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ing with concentration. Interfacial rheology showed that the peptide monolayer at concentration

800 Å2/molecule and above has yield stress which increases with surface concentration.

Biological lipid rafts are dynamic self-organized membrane microdomains which can recruit

specific peptides and lipids selectively while excluding others.16 The lipid DPPC shows a variety

of different ordered states due to the steric and van der Waals interactions between neighboring

head groups and alkyl chains. DPPC monolayers exhibit a disordered liquid-expanded (LE) phase

that transforms into a liquid-condensed (LC) phase with long-range orientational and short-range

positional order at high concentration. The DPPC monolayer has been studied using in-situ fluo-

rescence microscopy to correlate domain dynamics with shear flow.17–20 In the high concentration

limit, the thin domain boundaries were only visible by fluorescence and it was proposed that the

interlocked domains give rise to the yield stress response of the LC-DPPC monolayer. The domain

topology was preserved for small shear rates. The lipid interaction with peptides and their struc-

tural organization are governed by electrostatic and hydrophobic interactions. Recently molecular

imaging techniques like STM, surface-enhanced infrared absorption (SEIRA) spectroscopy, etc

have revealed hexameric pore formation in the lipid membranes.21,22 So far there is no structural

study of the model membranes at air-water interface under shear, though in-situ GIXD has been

proposed as a potential probe to monitor the dynamic properties of the model membranes.3,19

In this work, we present in-situ interfacial rheology along with GIXD to understand changes

in the membrane structure under the non-equilibrium steady state flow condition. Rheo-GIXD

measurements are done on the three model systems: Alamethicin, DPPC, and DPPC-Alamethicin

mixed monolayers, at different applied stress.

Experimental Details

Materials

The lipid with two hydrocarbon chains 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)

and the peptide Alamethicin (all from M/s Avanti Polar Lipids, Inc.) were used without further
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purification. A mixture of chloroform and methanol (1:1 v/v) was used as a volatile solvent to dis-

solve the peptide and lipid molecules. The required amount of the solution was spread on the air-

water interface using a microsyringe (M/s Hamilton, 50 µL) to obtain the interfacial layer between

the bi-cone and the co-centric homemade shear cell after the evaporation of the solvent.15 A deion-

ized water sub-phase (M/s Millipore, with a resistivity of 18.2 MΩ.cm) was used for the DPPC

monolayer. For pure Alamethicin and DPPC-Alamethicin (molar ratio [Alamethicin]/[DPPC] =

1:2) mixed monolayers, the sub-phase was the aqueous solution of 0.1 mole NaCl (pH 7), which

was adjusted with 10−3 mole phosphate buffer (Na2HPO4:NaH2PO4 1:1, M/s Merck).

Water surface

peltier base

Kapton window

Incident beamDifracted
beam

Detector
assembly

X-ray

Rheometer

Bi-cone

Figure 1: (Color online) Schematic of the in-situ Rheo-GIXD setup, showing the water-filled IRS
cell on the rheometer’s peltier base, the position of the bi-cone on the interface and the path of
the x-ray beam through the Kapton window striking the annular shaped interface (top). Schematic
of the GIXD mechanism: in-plane wavevector qxy = (4π/λ)sin(θ) and out-of-plane wavevector
qz = (2π/λ)(sin(α) + sin(αi)) are shown (Bottom left). Photograph of the experimental setup
showing the x-ray source, the rheometer on a z-stage and the detector assembly attached to the
goniometer (Bottom right).
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Rheo-GIXD measurement

After spreading the solution at 300 K the cell was covered by Teflon cover and then waited for

2000 s to let the spreading solvent evaporate under the slow helium flow. During this, an oscil-

latory shear of strain amplitude γ0 = 0.001 with an angular frequency ω = 10 rad/s was applied

to follow up the formation of the monolayer. To maintain identical initial conditions before each

creep measurement, monolayers were presheared at shear stress σ = 100 µPa for 200 s and then

allowed the system to equilibrate for 300 s. After 500 s from the starting of creep measurements,

GIXD measurements were started to scan the system in the steady flow state. The rheo-GIXD ex-

periments were carried out at the SIRIUS beamline of the SOLEIL Synchrotron, France using an

x-ray photon energy of 8 keV (λ ≈ 1.55 Å) at 285 K.23 A stress-controlled rheometer (M/s Anton

Paar, model MCR-501) fitted with a homemade interfacial shear cell (radius = 65 mm) based on

the bi-cone geometry (radius = 34.14 mm) was mounted on the SIRIUS beamline. A schematic

of the experimental setup is shown in Figure 1. The dimension of the x-ray beam footprint on the

liquid surface was maintained to be ∼ 1.5 mm × 43 mm (velocity-gradient velocity direction) by

the slits attached to the x-ray source. As the x-ray grazing angle is very small, the shear cell was

slightly overfilled so that there was an inverted meniscus. The position of the rheometer was set to

have the x-ray beam ∼ 5 mm away from the cone edge. After each load to place the x-ray beam

footprint in the middle of the region, the height of the stage was adjusted with a motor in order to

bring the liquid surface to the desired height with the help of laser reflection from the water surface

to a fixed camera. Note here the local velocity of the region being scanned is ≈ γ̇× 25 mm; where γ̇

is the global shear rate of the system and 25 mm is the distance of the x-ray footprint from the cell

wall. Water-saturated helium was injected slowly inside the cell from top to reduce scattering from

the air. The monochromatic x-ray beam was adjusted to strike the interface at an incident angle αi

= 2.28 mrad, which corresponds to 0.85 αc, where αc is the critical angle of air-water interface1

for the wavelength used. The linear (1D) gas filled position sensitive detector (PSD) fitted with the

goniometer was used to record the diffraction with vertical span 0◦ ≤ α ≤ 9◦ and by varying the

horizontal angle 2θ from low to high with small steps (∆(2θ) = 60 mdeg).
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GIXD Data analysis

As a check, a smooth background is observed in GIXD from the clean water surface without any

feature. Two dimensional (2D) diffraction plots for all the three monolayers at rest are shown in

Figure 2. The in-plane scattering characterized by the wave vector qxy (= (4π/λ)sin(θ)) gives in-

formation about Bragg peaks in velocity-velocity gradient plane (V×∇V) with resolution of 0.005

Å−1. On the other hand, out-of-plane scattering with qz (= (2π/λ)(sin(α) + sin(αi))) gives infor-

mation about the Bragg rods1,13 with resolution of 0.006 Å−1. In contour plots, peaks are well

separated in qxy-qz plane. We note that the relatively more noise in the data compared to the

monolayers prepared in Langmuir trough is expected because our experiment are done on a spread

monolayer in place of compressing it from a liquid expanded phase and later, it is in the flow

state.9,11,13 We have adopted the box integration method for each peak as discussed below. Bragg

peaks are observed by integrating the contours from qz = 0 Å−1 to 0.05 Å−1 and from 0.15 Å−1

to 0.25 Å−1. Bragg peaks are fitted with Voigt function along with background intensity to get

the peak centers and the full width at half maximum (FWHM).9 For DPPC, lattice distance dhk =

2π/qhk are extracted using Bragg peaks q02 and q11 and then fitted to 2D centered rectangular unit

cell model to get the lattice parameters a and b5,13 and hence area/molecule. FWHM of the Bragg

peaks were used to determine the coherence length L (L= 2π/FWHM).

Bragg rod profiles are obtained by integrating the contours for ∆qxy = q02 ± 0.015 Å−1 (near

q02), and q11 ± 0.030 Å−1 (near q11) (see Figure 2). In our GIXD data q02 and q11 peaks have long

tails suggesting large variation in the tilt angle of hydrocarbon chains with respect to the interface

normal towards the next-nearest-neighbor direction. The maximum tilt angle (δ) is calculated using

δ = ∆qz/(2π/a), where ∆qz is the maximum peak to peak distance between the Bragg rods.9 We have

restricted our study for qxy ≥ 1.0 Å−1, because below this limit, the noise increases significantly

towards the direct beam.
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Figure 2: (Color online) GIXD intensity contours in (qxy, qz) plane, Bragg peaks (I vs qxy) and
Bragg rod profiles (I vs qz) of the three (a) Alamethicin (b) DPPC and (c) DPPC-Alamethicin
monolayers are shown under no shear condition at 285 K. Solid lines are fits using Voigt function.
In (c) for the bottom Bragg peak, the solid line is the resultant fit with two peaks (blue dotted line
and red shaded black dotted line). Color bars represent intensity values in contours.
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Results and discussion

Equilibrium study of Alamethicin, DPPC, DPPC-Alamethicin mixed mono-

layer

Before applying shear to the monolayers at the annular shaped air-water interface between the

bi-cone and the shear cell, their structural properties were characterized. Figure 2 shows the equi-

librium diffraction patterns of Alamethicin, DPPC, DPPC-Alamethicin mixed monolayer. The

Alamethicin monolayer was prepared for 12 Å2/molecule surface concentration as lower concen-

trations do not give rise to a measurable diffraction peak in the GIXD. The equilibrium GIXD

pattern shows up a strong peak at qxy = 1.514 Å−1 near qz = 0 confirming that the Alamethicin

molecules are adsorbed on the surface. The observed strong peak due to the Alamethicin cor-

responds to the pitch of the helix of 4.15 Å(Figure 3c) which is quite small compared with the

pitch of 5.4 Åfor a free α-helix. This reduction in helix pitch is due to the compact packing of

Alamethicin molecules on the water surface at this high concentration, consistent with the previous

study of the helical scattering distribution of Alamethicin.24 The high coherence length estimated

from the measured linewidth (∼ 475 Å) suggests that there are domains of at least 14 correlated

molecules. The expected hexagonal lattice ordering, forming holes inside these domains,21 with

lattice parameters of a = 19 Åshould show a Bragg peak in the low q range which is not seen in our

experiments due to high background intensity near the direct beam, and hence we cannot estimate

the area/molecule from the GIXD.

The GIXD pattern from DPPC (solution concentration of 0.5 mg/mL) shown in Figure 2b gives

area/molecule = 42.1 Å2/molecule. DPPC has 2D ordering of molecules on the water surface and

gives rise to two well-separated two Bragg peaks at qxy = 1.464 Å−1 and qxy = 1.489 Å−1 (Figure

2b). The relative intensity of these two peaks is ∼ 2:1 as expected for the DPPC monolayer.9

The diffraction pattern is analyzed with the centered-rectangular unit cell model of rod-shaped

alkyl chains with uniform molecular tilts towards the nearest neighbors with respect to the layer

normal9 (Table 1). The coherence length and the hydrocarbon chain tilt angle are consistent with
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the previous studies.9

The DPPC-Alamethicin mixed monolayer was prepared with molar ratio 1:2 and with surface

concentrations 12 Å2/Alamethicin-molecule. The GIXD clearly shows three Bragg peaks (Figure

2c), one is at 1.510 Å−1 representing Alamethicin helix pitch and the other two at 1.463 Å−1 and

1.496 Å−1 with 2:1 intensity ratio, associated with the DPPC molecular ordering in the monolayer.

The estimated area/molecule of DPPC is 42.0 Å2/molecule which is very close to the pure DPPC

monolayer (Table 2). The hexagonal structure of the phase separated Alamethicin phase in DPPC-

Alamethicin21 mixture could not be observed due to the high direct-beam leakage intensity at low

qxy. Note that in equilibrium, the Alamethicin helix peak is on the shoulder of the DPPC q02

Bragg peak, but with shear flow coherence lengths corresponding to the DPPC q02 peak and the

Alamethicin helix peak increase drastically and thus Alamethicin helix peak stands well separated

in the GIXD pattern (see Figure 5b).

Creep study of the Alamethicin monolayer

We now proceed to examine the structural changes in the monolayers as a function of time under

different shear stress condition. Figure 3a shows the creep behavior of Alamethicin monolayer

studied as a function of applied stress up to 20 µPa. For all applied stresses (σ), shear rate (γ̇)

increases linearly with time for ∼ 60 s showing significant shear rejuvenation in the monolayer

before going to the final steady state. For σ ≤ 8 µPa, after rejuvenation, γ̇ decays by about two

orders of magnitude and at a later time (t ≥ 300 s) it shows large fluctuations with positive and

negative values (Figure 3a), a signature of the flow jammed state. In comparison, at 20 µPa,

γ̇ attains a steady state value of ∼ 0.06 s−1. Figure 3b shows the GIXD data at four values of

stress, integrated over time from 500 s to 2000 s. The helix peak position remains constant with

increasing σ but the line width shows variation reflecting the changes in the domain size (Figure

3c). However, there is no systematic variation of the coherence length with applied stress.
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Figure 3: (Color online) Rheo-GIXD creep data of the Alamethicin monolayer (presheared for 200
s followed by 300 s waiting before each measurement; see text): (a) creep curves; shear rate (γ̇) vs
time (t) (applied stress σ is mentioned close to the curves), (b) Bragg peak (I vs qxy) for different σ
are shown. Solid lines are fits using Voigt function. The Bragg peak corresponds to the helix pitch
of Alamethicin. (c) Helix pitch (p) and coherence length (Lp) are plotted vs σ. Straight horizontal
lines represent average values of p and Lp respectively.
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Creep study of the DPPC monolayer

The creep behavior of the DPPC monolayer was studied up to 40 µPa (Figure 4). Unlike Alame-

thicin monolayer, DPPC shows neither substantial shear rejuvenation nor flow jamming. For a

given σ, the steady state shear rate is an order of magnitude low compared to Alamethicin mono-

layer (see 20 µPa data). The Bragg peaks q02, q11, and Bragg rod profiles are shown in Figure

4b-d. The peak position of q02 does not change with stress whereas q11 peak position shifts to

lower values, suggesting elongation of the unit cell under shear flow. Additionally, the width of

q02 decreases with increasing σ, suggesting fusion of domains during flow. The tilt angle of the

hydrocarbon chains increases with σ (Figure 4d). Table-1 summarizes these results and are plotted

in Figure 6. The Rheo-GIXD data bring out that the DPPC domains increase in size under applied

stress.

Table 1: Structural packing parameters of DPPC monolayer for different σ.

σ d-spacings unit cell Amolecule Coherence Tilt angle
[µPa] [Å] dimensions [Å] [Å2] length [Å] δ [◦]

0 d11 = 4.293 ± 0.015 a= 4.986 ± 0.024 42.09 ± 0.23 L11 = 76 ± 7 6.9 ± 0.2
d02 = 4.221 ± 0.003 b= 8.443 ± 0.006 L02 = 256 ± 15

4 d11 = 4.328 ± 0.010 a= 5.042 ± 0.017 42.54 ± 0.16 L11 = 69 ± 5 7.9 ± 0.2
d02 = 4.218 ± 0.002 b= 8.437 ± 0.004 L02 = 314 ± 40

8 d11 = 4.350 ± 0.009 a= 5.072 ± 0.015 42.90 ± 0.15 L11 = 83 ± 6 9.6 ± 0.3
d02 = 4.229 ± 0.002 b= 8.459 ± 0.005 L02 = 627 ± 103

20 d11 = 4.384 ± 0.012 a= 5.123 ± 0.020 43.40 ± 0.19 L11 = 74 ± 6 9.9 ± 0.5
d02 = 4.236 ± 0.002 b= 8.472 ± 0.004 L02 = 620 ± 55

40 d11 = 4.359 ± 0.005 a= 5.088 ± 0.008 43.02 ± 0.08 L11 = 106 ± 5 9.8 ± 0.4
d02 = 4.227 ± 0.002 b= 8.455 ± 0.003 L02 = 447 ± 29

Creep study of the mixed monolayer

Figure 5 shows the creep behavior of the DPPC-Alamethicin mixed monolayer studied up to 60

µPa. Shear rejuvenation is observed with γ̇ increasing linearly with time. At 10 µPa it shows

rejuvenation up to 30 s and then goes to the flow jammed state after 60 s of flow similar to the

pure Alamethicin monolayer. At 20 µPa and above it goes to a steady flow state with an enhanced
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Figure 4: (Color online) Rheo-GIXD creep data of the DPPC monolayer (presheared for 200 s
followed by 300 s waiting before each measurement; see text): (a) creep curves; γ̇ vs t, (b) Bragg
peak q02, (c) Bragg peak q11, (d) Bragg rod profile for different σ are shown. Solid lines in (b-d)
are fits using Voigt function. Dashed vertical line in (c) has position qxy = 1.451 Å−1.
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Figure 5: (Color online) Rheo-GIXD creep data of the DPPC-Alamethicin mixed monolayer with
molar ratio P/L=1/2 (presheared for 200 s followed by 300 s waiting before each measurement;
see text): (a) creep curves; γ̇ vs t, (b) Bragg peak q02 (blue solid fit), Alamethicin helix peak (red
solid fit), (c) Bragg peak q11, (d) Bragg rod profile for different σ are shown. Solid lines in (b-d)
are fits using Voigt function. Dashed vertical line in (c) has position qxy = 1.463 Å−1.
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γ̇ compared to pure Alamethicin monolayer, which is orders of magnitude higher compared to

pure DPPC monolayer. This suggests that the DPPC domains are no longer closely packed in

the mixed monolayer and stay phase separated with Alamethicin even under high shear rates.

Unlike pure DPPC monolayer, peak position of q02 and q11 do not change under flow (Table 2).

Also, the tilt angle remains fixed with increasing σ. Strikingly Alamethicin helix coherence length

increases with σ suggesting that the Alamethicin domains are merging to bigger size promoting

more separation of phases in the system.

Table 2: Structural packing parameters of DPPC-Alamethicin mixed monolayer for different σ.

σ DPPC d-spacings, DPPC unit DPPC Coherence length Tilt angle
[µPa] Alamethicin pitch cell dimensions Amolecule [Å]; DPPC Lhk, δ [◦]

[Å] [Å] [Å2] Alamethicin Lp

0 d11 = 4.296 ± 0.009 a= 4.999 ± 0.016 42.00 ± 0.16 L11 = 85 ± 6 8.9 ± 0.1
d02 = 4.201 ± 0.003 b= 8.402 ± 0.005 L02 = 314 ± 17
p= 4.160 ± 0.005 Lp = 396 ± 96

10 d11 = 4.294 ± 0.005 a= 4.993 ± 0.008 42.02 ± 0.10 L11 = 134 ± 8 8.3 ± 0.2
d02 = 4.208 ± 0.003 b= 8.416 ± 0.007 L02 = 741 ± 92
p= 4.150 ± 0.005 Lp = 1510 ± 459

20 d11 = 4.284 ± 0.007 a= 4.981 ± 0.012 41.81 ± 0.15 L11 = 134 ± 11 8.2 ± 0.2
d02 = 4.197 ± 0.004 b= 8.395 ± 0.009 L02 = 321 ± 36
p= 4.140 ± 0.003 Lp = 1611 ± 305

30 d11 = 4.303 ± 0.005 a= 5.003 ± 0.009 42.20 ± 0.12 L11 = 132 ± 8 9.1 ± 0.4
d02 = 4.218 ± 0.004 b= 8.435 ± 0.008 L02 = 413 ± 58
p= 4.153 ± 0.006 Lp = 1250 ± 355

60 d11 = 4.300 ± 0.005 a= 4.999 ± 0.008 42.14 ± 0.07 L11 = 120 ± 17 9.2 ± 0.3
d02 = 4.215 ± 0.001 b= 8.429 ± 0.001 L02 = 772 ± 31
p= 4.151 ± 0.002 Lp = 1050 ± 91

For comparison we have plotted area/molecule (Amolecule), coherence lengths (Lhk) and the tilt

angle (δ) of DPPC for pure and mixed systems (Figure 6a-d). For pure DPPC monolayer, the

area/molecule (Figure 6a) increases rapidly with σ and saturates at high values, whereas for mixed

monolayer it does not change with σ. The coherence length in [02] direction has a rapid increment

for the pure DPPC monolayer but fluctuates for the mixed monolayer. On the other hand, the

coherence length in [11] direction has a slow increment for the pure DPPC monolayer but has a

rapid increment for the mixed monolayer. For pure DPPC monolayer, the tilt angle increases and
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Figure 6: (Color online) Area/molecule of DPPC (Amolecule), coherence length corresponding to
two DPPC Bragg peaks L02; L11, tilt angle of DPPC chains (δ) for pure DPPC (open circles)
and DPPC-Alamethicin mixed (red squares) monolayers are plotted against σ. Dotted curves are
guides to the eyes.
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then saturates for higher σ, but in the mixed monolayer, it is ∼ 9 ◦ for all σ.

Conclusions

We have described the methodology of Rheo-GIXD, an extension of the well established GIXD

technique to study molecular structure under steady shear on the interface by combining Interfacial

rheology and GIXD. We have demonstrated that the GIXD signal can be captured even when

interfacial molecular domains move under shear. At low σ, pure Alamethicin as well as mixed

monolayer show jamming behavior after about ∼ 100 sec. Rheo-GIXD measurements show that

DPPC 2D crystals are stable under shear flow, with significant changes in their lattice parameters

and tilt of the hydrophobic chains. The presence of buffer sub-phase stabilizes the peptide at

the air-water interface, but does not lead to the binding of the peptide with DPPC head group,

as inferred from the observation that, the scattering signal is almost similar in both cases (pure

DPPC and DPPC-Alamethicin mixed). The phase separation and the barrel-stave aggregation of

an amphipathic peptide in a peptide-lipid matrix in equilibrium21 is also consistent with our Rheo-

GIXD observations under shear. We have shown that, the peptide 2D crystals grow bigger in size

by merging domains under shear. The structural properties of hexameric pores could not be probed

here due to high direct-beam leakage in low qxy region.

Further work along with x-ray reflectivity study on this system will allow us to study the de-

pendence of structural parameters on the velocity gradient. Also, this technique can be used to

probe the solid-like to fluid-like transition under the oscillatory shear deformation. We believe

that our results will provide motivation for studying the molecular level structure of many other

membranes in non-equilibrium conditions.
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