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Extensions of the 
Theorem of Pythagoras

Introduction
The study of mathematics as a demonstrative discipline
begins in the 6th century BC with the Pythagoreans.
Pythagoras was a Greek philosopher-mathematician who
considered mathematics to be supreme and all other things
secondary. The Pythagorean theorem states that the sum of
the squares of the legs of a right angled triangle is equal to the
square of the hypotenuse. The theorem has a prior history.
Propositions like “the square of the diagonal of a rectangle is
equal to the sum of the squares of the two adjacent sides of
the rectangle” are found in Baudhāyana (8th century BC).
The theorem plays a crucial role in the development of
mathematics. Pythagoras is credited with the first logical
proof of the Pythagorean theorem.

Euclid (330-270 BC) was one of the great mathematicians.
His name and his geometry go hand-in-hand with the
history and development of mathematics. Euclid’s geometry
is based on axioms, which are “self-evident truths accepted
without proof.” Some of his contemporaries believed that
propositions such as “the sum of two sides of a triangle is
greater than the third side” need no proof. However, in
axiom-based mathematics, every proposition other than the
axioms needs to be proved, even if it seems self-evident.
Euclid proved such propositions by rigorous mathematical
reasoning in his book “The Elements” which is widely
considered to be the most successful and influential textbook
of all time. Although much of the content of the book was
known during his time, Euclid arranged the results into a
coherent logical framework. The irrational nature of
numbers such as

√
2,

√
3 was established by using the

Pythagorean theorem.
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Descartes (1596-1650) brought a revolution in mathematics by connecting geometry and
numbers/algebra. He introduced coordinates and gave formulas for the distance between two points and
the area of a triangle. One outcome of this insight was the description of space in terms of algebraic
coordinates on an infinite rectangular grid. A space of 2-dimensions is identified as the set of ordered pairs
(x, y), where x and y are real numbers.

In 1830, the Russian mathematician N Lobachevsky and the Hungarian mathematician J Bolyai
discovered a new geometry now known as ‘hyperbolic geometry.’ In 1851, the German mathematician
B Riemann obtained another geometry just as consistent and as true as the geometries of Euclid and
Lobachevsky and Bolyai. Riemannian geometry is based on the surface of a sphere where the straight lines
are the arcs of great circles. In this geometry, the sum of the angles of any triangle exceeds two right angles.

New mathematical developments in interaction with new scientific discoveries were made at an increasing
pace; this continues to the present day. Thus, we have the groundbreaking work of I Newton and
G Leibniz in the development of infinitesimal calculus towards the end of the 17th century. Newton
(1642-1727) discovered the laws of motion and the law of gravitation and used these along with the newly
invented calculus to create a revolution in physics. Einstein (1879-1955) brought about a revolution in
our understanding of space and time and in the process found a completely different way of looking at
gravitation.

In this article, we extend the Pythagorean theorem to n-dimensional Euclidean space. We show how to
generate (n+ 1)-tuples of integers satisfying the extended version of the theorem.

PythagoreanTheorem in 2D Euclidean Space
The Pythagorean theorem in 2-dimensional space is well known: “The sum of the squares of the legs of a
right-angled triangle is equal to the square of the hypotenuse.” It has over 350 proofs. Its mathematical
expression is:

r2 = x2 + y2, (1)
where r is the hypotenuse and x, y are the legs. A triplet (x, y; r) of integers which satisfies (1) is called a
Pythagorean triplet. Some familiar Pythagorean triplets: (3, 4; 5), (5, 12; 13), (7, 24; 25), (8, 15; 17).
There are many methods of finding such triplets. The following formula generates infinitely many such
triplets: (

2k, k2 − 1; k2 + 1
)
, for every k > 1.

Another such generating formula is (2k+ 1, 2k(k+ 1); 2k(k+ 1) + 1), for k ≥ 1. The ancient Indian
texts Baudhāyana and Apastamba offer another such family:

(
x,
x2 − 1

2
,
x2 + 1

2

)
, when x is odd;

(
x,
x2

4
− 1,

x2

4
+ 1

)
, when x is even.

Yet another such formula was given by Diophantus of Alexandria:
(

2mx
m2 + 1

,

(
m2 − 1

)
x

m2 + 1
, x

)
,

where m and x are any positive integers. (This gives a triplet of rational numbers satisfying the Pythagorean
relation.)

There are infinitely many Pythagorean triplets. Some of these are enumerated in Table 1 for use in the
sequel.
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(9, 40; 41), (11, 60; 61), (12, 35; 37), (16, 63; 65), (13, 84; 85),

(17, 144; 145), (19, 180; 181), (20, 21; 29), (20, 99; 101), (21, 220; 221),

(23, 264; 265), (24, 143; 145), (25, 312; 313), (27, 364; 365), (28, 45; 53),

(28, 195; 197), (29, 420; 421), (31, 480; 481), (32, 255; 257), (33, 56; 65),

(33, 544; 545), (35, 612; 613), (36, 77; 85), (36, 323; 325), (37, 684; 685),

(65, 72; 97), (85, 132; 157), (41, 840; 841), (145, 408; 433), …

Table 1. Some Pythagorean triplets

Geometrically the Pythagorean theorem is interpreted thus: “The sum of the areas of squares on the legs of
any right-angled triangle is equal to the area of the square on the hypotenuse.” Instead of squares, we could
also have equilateral triangles or semicircles (or any three shapes that are similar to one another).

PythagoreanTheorem in 3D Euclidean Space

Figure 1.

The Pythagorean theorem in 3-dimensional Euclidean space states that “the sum of the squares of the legs
of a tri-rectangular tetrahedron is equal to the square of the hypotenuse.” Two applications of the familiar
Pythagorean theorem in 2-dimensional space suffice to establish this result. (Figure 1 will perhaps suggest
a proof; details are left to the reader.) This is equivalent to stating the following: if P (x, y, z) is any point in
3-dimensional Euclidean space, so that x, y, z are respectively the distances from the origin O to the feet of
the perpendiculars from P upon the three coordinate axes, then the distance r of P from O is given by the
formula

r2 = x2 + y2 + z2. (2)

A few quadruples of integers satisfying (2) are listed in Table 2. We shall make some remarks later on how
such quadruples can be found.
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(3, 4, 12; 13), (8, 15, 144; 145), (7, 24, 312; 313), (12, 35, 684; 685),

(20, 21, 420; 421), (16, 63, 72; 97), (33, 56, 72; 97), (36, 77, 132; 157),

(13, 84, 132; 157), (12, 16, 99; 101), (15, 20, 312; 313), (17, 144, 408; 433),

(9, 40, 840; 841), (1089, 4840, 6480; 8161), … …

Table 2. Some Pythagorean quadruples

Generalised PythagoreanTheorem
A pictorial view of the Pythagorean theorem in dimensions higher than 3 may not be possible due to the
limitations of human imagination. But there is no such limitation in mathematics. We can think of any
n-dimensional space and develop our own mathematical world. The ideas used to extend the theorem to
3-dimensional space can be used in the same way to extend the theorem to n-dimensional space. If
xi = (x1, x2, . . . , xn) are the coordinates of a point P in n-dimensional Euclidean space, then the
Pythagorean theorem can be viewed as stating that the distance r from the origin O (0, 0, . . . , 0) to P is
given by the formula r2 =

∑n
i=1(xi)

2, i.e.,

r2 = (x1)2 + (x2)2 + (x3)2 + ...+ (xn)2. (3)

Thus in 3-dimensional Euclidean space, we have

r2 = (x1)2 + (x2)2 + (x3)2.

Generating n-tuples of integers satisfying the Pythagorean relation. For each positive integer n ≥ 4, we
can recursively generate infinitely many n-tuples of integers satisfying the Pythagorean relation, starting
with any Pythagorean triple. The method is illustrated in Figure 2. For example, for n = 4 we may start
with the triple (3, 4; 5). We also have the triple (5, 12; 13). Hence we have:

32 + 42 = 52, 52 + 122 = 132, ∴ 32 + 42 + 122 = 132,

Figure 2.
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leading to the quadruple (3, 4, 12; 13). Similarly, we may start with the triple (8, 15; 17). We also have
the triple (17, 144; 145). Hence we have:

82 + 152 = 172, 172 + 1442 = 1452, ∴ 82 + 152 + 1442 = 1452,

leading to the quadruple (8, 15, 144; 145). Both these quadruples had been listed in Table 2. Infinitely
more such quadruples can be listed in the same way.

We can use the same approach to generate 5-tuples of integers satisfying the formula for 4-dimensional
space. Thus we have:

32 + 42 = 52, 52 + 122 = 132, 132 + 842 = 852, ∴ 32 + 42 + 122 + 842 = 852,

leading to the 5-tuple (3, 4, 12, 84; 85). Here are some more 5-tuples of integers satisfying the formula for
4-dimensional space, all generated in the same manner:

(8, 15, 144, 408; 433), (7, 24, 60, 156; 169), (8, 15, 144, 348; 377).

Here are some 6-tuples of integers satisfying the formula for 5-dimensional space:

(3, 4, 12, 84, 132; 157), (3, 4, 12, 84, 204; 221),
(7, 24, 60, 156, 1092; 1105), (17, 144, 348, 2436, 5916; 6409).

They have all been generated in the same manner.

Proceeding in this manner, we can recursively find (n+ 1)-tuples of integers that satisfy the Pythagorean
theorem for any n ≥ 3. Here is an example from 7-dimensional space:

(3)2 + (4)2 + (12)2 + (84)2 + (12× 17)2 + (84× 17)2 + (12× 172)2 = (13× 172)2.

We leave the reader with the task of generating more such examples.

PythagoreanTheorem in 4D Minkowski Space-Time
We conclude this article by considering what happens to the Pythagorean formula in 4-dimensional
space-time.

By combining 3-dimensional space and 1-dimensional time into a single entity, calledMinkowski
space-time, Einstein developed his revolutionary special theory of relativity in 1905. His ideas force us to
radically change our ideas of space and time. In 4-dimensional Minkowski space-time, the distance r
between the origin O and the point P with space-time coordinates (x1, x2, x3, x4) is given by

r2 = (x1)2 + (x2)2 + (x3)2 − (x4)2. (4)

The negative sign in (4) is due to the time coordinate which is taken as imaginary (so its square is
negative). This formula results in some oddities; for example, it is possible for the distance between two
points to be 0 even when they do not coincide. (This is not possible in ordinary Euclidean space.) The
formula (4) can be viewed as the representation of Pythagorean theorem in 4-dimensional Minkowski
space-time. The 5-tuples of integers satisfying the formula

(x5)2 = (x1)2 + (x2)2 + (x3)2 − (x4)2

are called Pythagorean quintics and denoted by (x1, x2, x3; x4, x5).

There exist infinitely many 5-tuples of integers satisfying (4). For example:

(5, 12, 84; 36, 77), (8, 15, 144; 24, 143), (15, 20, 60; 33, 56),
(12, 16, 549; 101, 540), (15, 20, 60; 16, 63), (9, 12, 20; 7, 24),
(40, 75, 204; 21, 220), (84, 112, 225; 23, 264), (135, 140, 180; 23, 264).
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These may be generated by using the same kind of recursive reasoning as used earlier. For example, we may
start with 52 + 122 = 132 and 132 + 842 = 852. These two equalities result in the relation
52 + 122 + 842 = 852. We also have 362 + 772 = 852 (see Table 1). Hence we have
52 + 122 + 842 = 362 + 772, i.e.,

52 + 122 + 842 − 362 = 772.

This yields the Pythagorean quintic (5, 12, 84; 36, 77). Similarly for the others.
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