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From Regular Pentagons 
to the Icosahedron and 
Dodecahedron via the 
Golden Ratio – II

Introduction
In the previous article (At Right Angles, Issue 4, July 2019,
pages 5-9 ) we saw how we could construct a regular
pentagon using a ruler and compass, and discovered a nested
sequence of pentagons that can be built up by extending the
sides of a given regular pentagon (see Figure 1).

Figure 1.

We also calculated the edges and diagonals of each regular
pentagon (see Figure 2)
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Figure 2.

and got the following infinite sequence of side, diagonal, side, diagonal,...

1, φ, φ2, φ3, . . .

where φ is the Golden Ratio.

In this article 1 we will see that this sequence leads to two famous sequences, the Fibonacci sequence and
its cousin, the Lucas sequence. Moreover, we will see how the regular pentagon, the Golden Ratio, the
icosahedron and the dodecahedron all come together!

The Fibonacci and Lucas sequences from a regular pentagon
Recall that the Golden Ratio φ = 1+

√
5

2 and it satisfies the equation x2 − x− 1 = 0, that is,
φ2 − φ − 1 = 0. We are going to use this equation to compute the powers of φ (we saw a hint of this in
the last section of the previous article). Let us begin with φ2. Of course we could compute ( 1+

√
5

2 )2, but
mathematicians need to be lazy if they can get away with it! We know φ2 = φ + 1, so why not use that?
This computation is much simpler! Therefore,

φ2 = 1 +
1 +

√
5

2
=

3 +
√

5
2

.

What about φ3? We saw in the previous article that φ3 = φ(φ2) = φ(φ + 1) = φ2 + φ. Hence,

φ3 =
1 +

√
5

2
+

3 +
√

5
2

=
4 + 2

√
5

2
.

We can similarly see that

φ4 = φ3 + φ2 =
7 + 3

√
5

2
.

The reader has perhaps begun to notice some patterns. From now on the number n shall refer to a whole
number. First of all we can see by induction (keeping in mind that φ0 = 1) that

φn+1
= φn + φn−1 (1)

1I would like to thank Aashotosha Lele, Rishabh Suresh and Gautam Dayal for their suggestions and feed back while writing this article.
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Let us denote φn = ln+fn
√

5
2 with n ≥ 1 and see if we can find a pattern in the computation of both ln and

fn. From φ we get l1 = 1, f1 = 1 and from the fact that φ2 = φ + 1, we get l2 = 3, f2 = 1. Now for
n > 1, from Equation (1) we get:

φn+1
=

ln+1 + fn+1
√

5
2

= φn + φn−1
=

ln + fn
√

5
2

+
ln−1 + fn−1

√
5

2
=

(ln + ln−1) + (fn + fn−1)
√

5
2

,

(2)
giving us the formulas:

ln+1 = ln + ln−1, n > 1 (3)
fn+1 = fn + fn−1, n > 1 (4)

yielding l3 = 4, f3 = 2, l4 = 7, f4 = 3 and so on.

It is now time to pay attention to the other root of the equation x2 − x− 1 = 0, namely ψ = 1−
√

5
2 .

Notice ψ also satisfies the equation ψ2 = ψ + 1. Using the same technique as above, we can see that

ψ2 = 1 +
1 −

√
5

2
=

3 −
√

5
2

and

ψ3 =
4 − 2

√
5

2

and

ψ4 =
7 − 3

√
5

2

and so on. Just as in the case of φn, we get ψn = ln−fn
√

5
2 , n ≥ 1 and

ψn+1
= ψn + ψn−1

,where ψ0 = 1.

We can now create the following table:

φ = 1+
√

5
2 ψ = 1−

√
5

2

φ2 = 3+
√

5
2 ψ2 = 3−

√
5

2

φ3 = 4+2
√

5
2 ψ3 = 4−2

√
5

2

φ4 = 7+3
√

5
2 ψ4 = 7−3

√
5

2

φ5 = 11+5
√

5
2 ψ5 = 11−5

√
5

2
...

...

φn = ln+fn
√

5
2 , n ≥ 1 ψn = ln−fn

√
5

2 , n ≥ 1

The astute reader might have realised that adding and subtracting each row of the above table gives rise to
some familiar sequences:
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φ + ψ = l1 = 1 φ − ψ = f1
√

5 =
√

5

φ2 + ψ2 = l2 = 3 φ2 − ψ2 = f2
√

5 =
√

5

φ3 + ψ3 = l3 = 4 φ3 − ψ3 = f3
√

5 = 2
√

5

φ4 + ψ4 = l4 = 7 φ4 − ψ4 = f4
√

5 = 3
√

5

φ5 + ψ5 = l5 = 11 φ5 − ψ5 = f5
√

5 = 5
√

5
...

...

φn + ψn = ln, n ≥ 1 φn − ψn = fn
√

5, n ≥ 1

So, the two sequences that are emerging are

l1 = 1, l2 = 3, l3 = 4, l4 = 7, l5 = 11 . . .

and
f1
√

5 =
√

5, f2
√

5 =
√

5, f3
√

5 = 2
√

5, f4
√

5 = 3
√

5, f5
√

5 = 5
√

5 . . . .

The first sequence
L = {l1, l2, l3, l4, l5, . . . ln, . . . } = {1, 3, 4, 7, 11 . . . }

is called the Lucas sequence. In the second sequence if we divide by
√

5 throughout, we get

F = {f1, f2, f3, f4, f5, . . . fn, . . . } = {1, 1, 2, 3, 5 . . . }

the famous Fibonacci sequence!

Both these sequences have the same generative principle: you start with two given terms, here
l1 = 1, l2 = 3 and f1 = f2 = 1 and then generate the sequences using the iterative Equations (2) and (3),
namely ln+1 = ln + ln−1 and fn+1 = fn + fn−1, n > 1.

Let us now return to the nth term of the Lucas sequence ln = φn + ψn and the nth term of the Fibonacci

sequence fn =
φn − ψn

√
5

. In other words

ln =
(

1 +
√

5
2

)n

+

(
1 −

√
5

2

)n

and
√

5fn =
(

1 +
√

5
2

)n

−
(

1 −
√

5
2

)n

.

Now consider ψ = 1−
√

5
2 ; it is easy to see that −1 < ψ < 0, and hence limn→∞ ψn = 0. This then tells us

that if n is large ln ≈
(

1+
√

5
2

)n
and that

√
5fn ≈

(
1+

√
5

2

)n
, yielding the following amazing result

ln
ln−1

≈ 1 +
√

5
2

= φ and
fn
fn−1

≈ 1 +
√

5
2

= φ

the Golden Ratio! So for both the Fibonacci sequence and the Lucas sequence the ratio of successive terms
approximates the Golden Ratio.

The Icosahedron and the Golden Ratio
It is time to now put together all that we have learned. A rectangle with side lengths 1 and φ is called a
Golden Rectangle. Let us take three such Golden Rectangles, ABCD, EFGH, IJKL and intersect them
mutually perpendicular to each other in three dimensions along the x, y and z axes as shown in Figure 3.
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Figure 3.

Notice the special choice of coordinates for our 12 vertices:

A = ( 1
2 ,

φ
2 , 0), B = (−1

2 , φ2 , 0), C = (−1
2 , φ2 , 0), D = ( 1

2 ,
−φ
2 , 0),

E = (φ2 , 0,
1
2), F = (−φ2 , 0, 1

2), G = (−φ2 , 0, −1
2 ), H = (φ2 , 0,

−1
2 ),

I = (0, 1
2 ,

φ
2 ), J = (0, −1

2 , φ2 ), K = (0, −1
2 , −φ2 ) and L = (0, 1

2 ,
−φ
2 ).

This choice of coordinates ensures that we have Golden rectangles with the correct lengths. You might
have also become aware of the amazing symmetry among the vertices.

We now claim that the vertices form the 12 vertices of a regular icosahedron! How do we construct the
edges? This is quite intuitively obvious. Take the vertex E for example. There are 11 possible edges that
can start at E, but we can reject EB, EC, EF, EG, EK and EL because they are longer than the unit edge
EH. This leaves us the edges EA, ED, EH, EI and EJ. Don’t worry we will show shortly that these edges
do have length 1!

Recall that a regular icosahedron is one of the five Platonic solids. Platonic solids, also called the ‘regular
solids,’ are 3-dimensional geometric solids whose faces are all congruent regular polygons (like equilateral
triangles or squares) and in which the same number of polygons meet at each vertex. The amazing fact is
that there are only 5 such Platonic solids. For a proof of this please see [3].

The regular icosahedron has 12 vertices, 30 edges and 20 faces (all of which are equilateral triangles).
Moreover at each vertex 5 equilateral triangles meet. Notice that the polyhedron ABCDEFGHIJKL has 12
vertices, 30 edges and 20 faces and moreover, at each vertex 5 triangles meet. If we show that each of these
triangles is equilateral (and hence congruent), then we would have established that ABCDEFGHIJKL is a
regular icosahedron. We will do this by showing that all the 30 edges are of equal length.

Since six of the edge lengths come from our intersecting Golden Rectangles of breadth one, we need to
show that all the other twenty four edges are of length one. But we don’t need to do 24 calculations! Take
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Figure 4.

any edge that forms the icosahedron other than the ones that come from the rectangle; so for example
consider the edge EA as opposed to EH. (See Figure 4.) Using the Pythagorean formula in 3-D (the
distance between (x1, y1, z1) and (x2, y2, z2) is

√
(x1 − x2)2 + ((y1 − y2)2 + (z1 − z2)2) we get:

|EA|2= (
φ − 1

2
)2 + (

−φ
2

)2 + (
1
2
)2 =

2φ2 − 2φ + 2
4

=
φ2 − φ + 1

2
,

and from the equation φ2 − φ = 1 we get:

(|EA|)2 = 1.

You will notice that this very same computation works for every edge that is not a part of a Golden
Rectangle, and so we are done!

What about the converse? That is, if we are given a regular icosahedron can we find three intersecting
Golden Rectangles, whose vertices coincide with six of those of the regular icosahedron? Since regular
icosahedra are essentially determined by their edge lengths, we know that any two regular icosahedra with
the same edge length are congruent. Moreover, given an arbitrary regular icosahedron in 3-space, we can
always move it (using translations and rotations) in such a way that it coincides with the regular
icosahedron ABCDEFGHIJKL. The three Golden Rectangles then coincide with our original Golden
Rectangles ABCD, EFGH and IJKL.
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Figure 5.

We claimed that the regular pentagon is also part of the icosahedron. If you have not already noticed it,
then you will see the regular pentagon show up in a regular icosahedron in quite a ‘natural’ manner. Every
vertex of an icosahedron forms the apex of a pyramid whose base is a regular pentagon, a sort of
‘pentagonal hat’ as shown in Figure 5.

We have rotated the regular icosahedron in Figure 4 to obtain Figure 5, so that the vertex A is on top and it
is the apex of the pyramid with base the regular unit pentagon EHLBI. Now IL is the diagonal of this
pentagon and from part I of this article we know it has to be of length φ, which of course it is by
construction!

The Dodecahedron and the Golden Ratio
Every Platonic solid comes with a dual (see [2] to learn more about duals). The icosahedron is the dual of
the dodecahedron and vice-versa (for the rest of this article we will just say icosahedron and dodecahedron
without the prefix ’regular’, because all of the ones we refer to are going to be regular). One way to
construct the dual is to take the centres of all the faces as vertices of the dual solid. So corresponding to the
12 vertices of the icosahedron are the 12 faces of the dodecahedron. The dodecahedron has 20 vertices
(one for each face of the icosahedron) and 30 edges.

The following series of figures 2 shows how the regular dodecahedron is built up from the icosahedron. We
begin with building four regular pentagons around the vertices A, E, I, and J. We have shaded the regular
pentagon surrounding the vertex E.

2The reader might be curious as to how the coordinates of the twenty vertices of the regular dodecahedron are to be found, given Figure

4. It turns out that the simplest way is to first recognize that there is a sphere with centre the origin and radius
√
φ+2
2 =

√
5+

√
5

4 that
envelops the icosahedron formed by the intersecting Golden Rectangles . That is, it passes through all twelve vertices A, B, . . . , L. Let
us call this sphere S . Then the faces of the dodecahedron lie on the tangent planes to S passing through the 12 vertices A, B, . . . L. To
find the coordinates of the twenty vertices of the regular dodecahedron we need to first find the lines of intersection of suitable tangent
planes and then find the points of intersection of suitable lines. Obviously this footnote is too small to fit in all the details and providing
all the details is an article in its own right!
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Figure 6.

We then add regular pentagons around the vertices H, D, K, and L.

Figure 7.
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And finally B, F, G, and C.

Figure 8.

We can now see how the Golden Rectangles, the icosahedron and the dodecahedron come together.

Figure 9.
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We hope that in this two part series we have managed to convince the reader that the regular pentagon, the
Golden Ratio, the Fibonacci sequence the icosahedron and the dodecahedron all come together so
beautifully.
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