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Geometrical Proof 
of an Application of 
Ptolemy’s Theorem

Introduction. A recent article [1] discussed Ptolemy’s
theorem and applications of the theorem. The author noted
that for the first application, there was also a trigonometric
solution based on the identity
sin(60◦− θ)+ sin θ = sin(60◦+ θ). In this note, we present
a simple and elegant geometrical proof for this theorem.

Theorem. Let ABC be an equilateral triangle, and let P be any
point on the minor arc BC of its circumcircle. Then
PA = PB + PC.

A geometrical proof. Figure 1 depicts the situation. On BP
as base, draw an equilateral triangle EBP, with E on the same
side of BP as A. Join AE.

��

�� ��

��

��

A

B C

P

E

Figure 1. Construction: Triangle EBP is equilateral. Join AE.

Observe that we have shown AE using a dashed line and EP
using a solid line. This is to ensure that we do not
unconsciously assume that points A,E, P lie in a straight line.
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Since �ABC = �EBP, both being 60◦, it follows that �ABE = �CBP (both angles are marked).

Consider △ABE and △CBP. They are congruent to each other (side-angle-side or SAS congruence),
therefore �BAE = �BCP. As we also have �BAP = �BCP (“angles in the same segment”), it follows that
�BAE = �BAP, and hence that points A,E, P are collinear. Hence PA = PE + EA.

But PE = PB, since △EBP is equilateral, and EA = PC, by the triangle congruence just proved.

Hence PA = PB + PC. �
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1. (5 – 3) = (2 × 1)

2.   (7 – 5) = (3 – 2) + 1

3.    (11 – 7) × (3 – 2) = (5 – 1)

4.    (7 – 5) + (3 – 2) = (13 – 11) + 1

5.   (11 – 7) × [(5 – 3) – (2 – 1)] = (17 – 13)

6.   (7 – 5) × [(3 – 2) + 1] = (19 – 17) + (13 – 11)

7.   (11 – 7) × (5 – 3) × (2 – 1) = (17 – 13) + (23 – 19)

8.   (29 – 23) + 1 = (19 – 17) + (13 – 11) + (7 – 5) + (3 – 2)

9.   [(31 – 29) + (11 – 7) + (5 – 3)] × (2 – 1) = (23 – 19) + (17 – 13)

10.   (37 – 31) + (19 – 17) + (7 – 5) = (29 – 23) + (13 – 11) + (3 – 2) + 1

11.   (41 – 37) × [(23 – 19) – (31 – 29)] = {(17 – 13)[(11 – 7) – (5 – 3)]} × (2 – 1)

12.   (37 – 31) + (43 – 41) + (13 – 11) + 1 = (29 – 23) + (19 – 17) + (7 – 5) + (3 – 2)

13.   (47 – 43) + (41 – 37) + (31 – 29) + (5 – 3) = [(23 – 19) + (17 – 13) + (11 – 7)] × (2 – 1)

14.   (53 – 47) + (29 – 23) + (7 – 5) = (37 – 31) + (43 – 41) + (19 – 17) + (13 – 11) + (3 – 2) + 1

15.   (47 – 43) + (31 – 29) + (23 – 19) + (11 – 7) = [(59 – 53) + (41 – 37) + (17 – 13)] × [(5 – 3) – (2 – 1)]

16.   [(61 – 59) + (53 – 47) + (29 – 23)] × 1 = [(43 – 41) + (37 – 31) + (19 – 17) + (13 – 11) + (7 – 5)] × (3 – 2)

17.  (67 – 61) + (47 – 43) + (23 – 19) + (11 – 7) = [(59 – 53) + (41 – 37) + (17 – 13) + (31 – 29) + (5 – 3)] × (2 – 1)

18.  (53 – 47) + (29 – 23) + (19 – 17) + (7 – 5) + 1 = (71 – 67) + (61 – 59) + (37 – 31) + (43 – 41) + (13 – 11) + (3 – 2)
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