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Abstract

Mixed surfactant systems show many interesting phases such as the random mesh phase con-

sisting of a disordered array of defects (water-filled nano-pores in the bilayers). The present study

addresses the non-equilibrium phase transition of the random mesh phase under shear to an ordered

mesh phase with high degree of coherence between defects in three dimensions. In-situ small-angle

synchrotron X-ray diffraction under different shear stress conditions shows sharp Bragg peaks in

X-ray diffraction, successfully indexed to the rhombohedral lattice with the R3̄m space group sym-

metry. The ordered mesh phase shows isomorphic twinning and buckling at higher shear stress.

Our experimental studies bring out rich phase transitions in concentrated mixed surfactant systems

hitherto not well explored and provide motivation for a quantitative understanding.
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I. INTRODUCTION

Mesh phases are liquid crystalline phases formed in ionic as well as non-ionic mixed

surfactant systems, consisting of 1D stack of bilayers with water-filled pores or curvature

defects. Depending on the correlation of these defects, the phase can be distinguished as

random mesh phase (LDα ) if the defects exhibit a liquidlike ordering and ordered mesh phase

if the defects are correlated across the bilayers locked into a three dimensional lattice. These

can be further classified as tetragonal or rhombohedral (R3̄m) mesh phase, depending on

their structural symmetry [1–3]. As a simple manifestation, the mesh phase is structurally

similar to the adjacent lamellar phase which occurs at higher surfactant concentrations and

topologically similar to the preceding hexagonal phase formed at lower surfactant concen-

trations. However, non-uniform mean curvature in the mesh phase is in sharp contrast with

the hexagonal or lamellar phase [4, 5]. Extensive studies on the equilibrium phase behaviour

of lyotropic surfactant systems have established that the spontaneous formation of the de-

fects/pores in the mesh phase and their long-range ordering across the stack of the bilayers

require a balancing of the head group interactions and the chain flexibility, particularly

through the addition of a third component to a binary surfactant-water mixture [2, 6–13].

Similarly, the perforated bilayers in lipid-water systems form intermediate phases due to

incorporation of proteins into the pores [14].

The kinetics of the mesh phase to the lamellar phase transition is well understood in equi-

librium, and there have been many recent reports which indicate the role of counterions and

temperature [1, 15–19]. Despite the structural similarity between the unperforated lamellar

phase and the mesh phase, the dynamical behaviour of the mesh phase under shear stress

is less understood. In the context of bilayers, it is known that the external flow modifies

the amphiphilic interfaces resulting in transitions such as rolling of bilayers into spherulite

known as onions [20–22]. The transitions in bilayer systems have been attributed to suppres-

sion of thermal undulations due to imposed shear stress causing hydrodynamical instabilities

which occur above a critical shear rate (inversely proportional to the bilayer spacing), and

thus are observed only in dilute liquid crystalline phases [23, 24]. In comparison, in concen-

trated surfactant systems, above the Kraft temperature, shear induced reversible transition

from bilayers to crystalline phase is observed at intermediate shear rates originating from

re-distribution of the counterions [25]. Similarly, shear induced unbinding of counterions
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is observed in other bilayer forming or multilamellar vesicles phase [26]. Also, an increase

in alignment of the randomly oriented crystallites, bilayers or cylinders over macroscopic

dimensions in the plane of shear as well as a transition from random mesh phase to the

onion phase under shear have been observed [22, 27]. Notably, the transition to the onion

phase is preceded by a change in orientation of the bilayers.

Here, we bring out a few unexplored aspects of flow behavior of the mesh phases formed

in mixed cationic-anionic surfactant systems. Time resolved Rheo-SAXS measurements

allow us to follow the temporal evolution of the X-ray diffraction peaks corresponding to

different lattice planes of defects in the bilayers. A reorientation of the bilayers in LDα phase

is always observed under shear with the bilayers stacked along the shear plane (V-∇V

plane) which is identified as the a-orientation. Intriguingly, further shearing reveals two

distinct structural transitions depending on the separation between the bilayers. At lower

surfactant concentrations (larger bilayer separation), the a-oriented bilayers transform to

an onion phase, whereas, at higher surfactant concentrations (smaller bilayer separation),

a transition to R3̄m phase is observed. The LDα phase to R3̄m phase transition occurs

through the onset of correlation of the nano-pores across the bilayers before they lock into

a 3D rhombohedral lattice. This is followed by the shear-induced isomorphic twinning and

buckling transition of the ordered mesh phase (R3̄m) due to the hydrodynamic instability.

II. EXPERIMENTAL DETAILS

A. Materials

Surfactants cetyltrimethylammonium bromide (CTAB) and cetylpyridinium chloride

(CPC) from Sigma Aldrich were used without further purification. Sodium-3-hydroxy-

2-naphthoate (SHN) was prepared by adding an equivalent amount of an aqueous solu-

tion of sodium hydroxide (NaOH) to an ethanol solution of 3-hydroxy-2-naphthoic acid

(HNA). Ternary solutions of surfactant, SHN and water were prepared with deionized

water (resistivity ∼ 18.2 MΩ.cm) for the total weight fraction of surfactant + SHN

(φ = (Surfactant + SHN)/(Surfactant + SHN + H2O)) at the desired molar ratio of the

two components (α = [SHN]
[Surfactant]

) [2]. In equilibrium, the counterion SHN is known to be

adsorbed at the micelle-water interface [2, 3, 8], thus decreasing the spontaneous curvature
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of the micellar aggregates formed by CTAB or CPC, to transform the cylindrical micelles to

bilayers as α approaches 1. The detailed equilibrium phase diagrams of these systems ([8])

have shown random and ordered mesh phases over a wide range of surfactant concentration

(0.2 < φ < 0.7). In our present experiments, the value of α was fixed at 1 for CTAB-SHN-

water system and 0.5 for CPC-SHN-water system. The samples were well sealed and left

in an oven at 40◦ C for more than 2 weeks to equilibrate. All the measurements were done

with the freshly loaded sample.

B. Rheo-SAXS experiments

We have used time-resolved small-angle X-ray scattering (SAXS) setup coupled with

Haake-Mars rheometer at the P10 beamline of the PETRA III synchrotron [see Fig. S1 in

the Supplemental Material [28]] [29]. The sample chamber was fitted with a Peltier based

temperature controller and a humidity controller along with nitrogen flow. The synchrotron

X-ray beam was deflected vertically and passed through the sample. The X-ray diffraction

patterns were recorded on a Pilatus 300 K detector with the varying exposure time of 10-50

seconds. For parallel plate (PP) vespel geometry (DuPont, diameter 35 mm), due to high

absorbance, the sample thickness was chosen to be 1 mm and the X-ray beam was in velocity

gradient direction at a fixed position 13 mm from the plate centre. The detector was placed

parallel to the velocity-vorticity plane, at a distance 1000 mm from the sample. For the

Couette glass geometry (with a diameter of 29 mm for the inner cylinder and a gap of 4

mm), the sample height was 5.5 mm, and the X-ray beam was along the vorticity direction

with the detector plane parallel to the velocity-velocity gradient plane. The position of the

beam was varied in Couette’s radial direction by slowly translating the motorized stage of

the rheometer.

C. Rheo-SALS experiments

In-situ depolarized small-angle light scattering (SALS) measurements were performed

along with rheology in a stress-controlled rheometer (MCR 102, Anton Paar) fitted with a

temperature controller [see Fig. S1 in the Supplemental Material [28]]. Parallel plate (PP)

glass geometry of diameter 43 mm was used with 1 mm sample thickness. The laser beam
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(wavelength of 658 nm) was in the velocity gradient direction at a fixed position 15 mm

from the plate center. SALS images on the white screen (parallel to the velocity-vorticity

plane) were recorded by an 8-bit color CCD camera (Lumenera, 0.75C, 1200×980 pixels)

fitted with a PENTAX TV Lens of focal length 12 mm.

III. RESULTS AND DISCUSSION

Otherwise stated, here all the measurements were done at 30◦ C (above the Kraft tem-

perature 25◦ C) with the PP vespel geometry having sample thickness of 1 mm. We have

estimated the size of the water-filled defects (∼ 3
√

defect volume) to be in the range from 4.5

nm to 6 nm [see section-A in the Supplemental Material [28]] and hence justifying calling

the defects as nano-pores.

A. Random mesh phase (LDα ) to onion phase transition under shear

We start with CTAB-SHN-water system for φ < 0.5 and α = 1 for which the flow curve

is shown in Fig. 1(a), recorded with the waiting time at each stress to be 30 sec. We point

out that these flow curves are not in a steady state as the system evolves with time under

stress. It can be seen that the lamellar phase exhibits a typical shear thinning behavior

where viscosity (η) decreases with shear rate or stress. At smaller shear rates, the lamellae

sheets flow pass over each other resulting in a sharp decrease before showing an inflection

point, followed by another shear thinning region. In the reverse run, we observe only shear

thinning behavior suggesting that the observed structural changes are not shear reversible.

Since flow curve measurements are time averaged over several seconds at a particular shear

rate, time resolved rheology reveals temporal evolution of viscosity at a constant shear rate.

Figure 1(b),(f) show the evolution of η at a constant shear rate (γ̇) of 10 s−1, for two

different volume fractions φ = 0.3 and 0.4 respectively at α = 1. For both values of φ, η

shows a minimum at t ∼ 10 s and then increases to a high value. For φ = 0.3, without

shear, the X-ray diffraction pattern consists of an isotropic Bragg ring due to the randomly

oriented lamellae having d-spacing dl = 9.60 nm [Fig. 1(c)]. Here, we do not observe the

diffuse scattering peak due to the lack of in-plane correlation between nano-pores. Before

t = 1000 s, no significant change in the X-ray diffraction pattern is observed [Fig. 1(d)].
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However, a six-fold hexagonal shaped pattern is observed [Fig. 1(e)] in the steady state after

t = 1000 s, suggesting a 2D hexagonal close pack ordering of onions under shear. For φ =

0.4, without shear, the observed unoriented lamellae [Fig. 1(g)] has a d-spacing dl = 7.30 nm

and the nano-pores have in-plane correlation length dd = 6.93 nm [Supplemental Material

[28], Table S1]. For t ≥ 10 s, a-orientation of the bilayers [30] is observed where the lamellar

peak is sharp along the vorticity direction (in the ∇×V direction or q⊥ direction) and the

diffuse scattering peak becomes sharp along the flow direction (in the V direction or q‖

direction), indicating bilayer planes stacked parallel to the V-∇V plane (the shear-plane)

[Fig. 1(h)]. The observed decrease in viscosity corresponding to the a-orientation indicates

that the bilayers offer less resistance to shear in this configuration. After t = 1000 s, a sharp

isotropic Bragg ring is observed suggesting the formation of the onion phase under shear

[Fig. 1(i)]. Further, we have used the in-situ small-angle light scattering (Rheo-SALS) to

confirm the LDα phase to onion phase transition, by observing a four-lobed clover-leaf pattern,

a signature of the onion or multilamellar vesicles, under the depolarized SALS [22]. The

Rheo-SALS measurements were performed in the VH (polarizer ⊥ analyzer) configuration.

Figure 2 shows the evolution of Rheo-SALS patterns obtained during the stress relaxation

measurement of LDα phase for φ = 0.4 at γ̇ = 10 s−1. The time evolution of η is the same

as in Fig. 1(f) (data not shown). At t ∼ 10 s, the isotropic pattern [Fig. 2(a)] changes

to an anisotropic pattern [Fig. 2(b)], oriented along the q⊥ direction indicating the flow

alignment of bilayers parallel to the shear-plane. After t = 500 s, the expected four-lobed

clover-leaf pattern associated with the onion phase appears [Fig. 2(c)]. Our SAXS and SALS

measurements indicate hexagonal close packing of the onions under shear. The increase in η

is result of the transition from a well separated lamellae to closely packed spherulite. After

1000 s, the observed fluctuations in the η is possibly due to the onions’ re-arrangements

or variation in the size of these onions [31]. Though LDα phase to onion phase transition

under shear is a well studied phenomenon [22], the noteworthy aspect of the present study

is the crucial role of curvature defects in driving this transition that has not been addressed

in earlier reports. We show that the bilayers transform to onions or spherulites only for a

low density of curvature defects in the plane of the bilayers. A higher defect density with a

correlation length > 7 nm induces a 3D ordering of defects to preclude the formation of an

onion phase.
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B. Shear-induced 3D ordering of nano-pores in LDα phase

The concentrated LDα phase formed in the CTAB-SHN-water system at φ = 0.5 and α

= 1, demonstrates LDα phase to R3̄m phase transition under shear. On applying a constant

shear rate γ̇ = 50 s−1, η of the LDα phase decreases with time and it reaches the steady

state after t ∼ 200 s [Fig. 3(a)]. Figure 3(b–f) show the temporal evolution of the X-

ray diffraction pattern. In the quiescent state, the X-ray diffraction pattern [Fig. 3(b)]

reveals two Bragg rings with their q ratio 1:2 (characteristic of an unaligned lamellar phase),

with dl = 5.49 nm [Table I]. As expected in a random mesh phase, the diffuse isotropic ring

observed at a smaller angle confirms the existence of liquid-like correlated nano-pores (water-

filled) in the plane of the bilayer with an in-plane correlation length dd = 7.67 nm. The

nearly isotropic Bragg rings corresponding to the lamellar spacing of bilayers and the liquid-

like correlation of the in-plane nano-pores evolve to the well aligned anisotropic diffraction

pattern at t ∼ 50 s, revealing the a-oriented state of the bilayers [Fig. 3(c)]. The occurrence

of the diffuse scattering peaks as arcs azimuthally centred at q‖ ∼ 0 suggests an absence

of the trans-bilayer correlation of the nano-pores. Notably, at t ∼ 515 s, the azimuthal

intensity profile of the diffuse scattering peak shows a splitting away from q‖ = 0 [Fig.

3(e)], suggesting the onset of long range correlation of the nano-pores across the bilayers

favoring the formation of a 3D ordered structure. At t ∼ 850 s [Fig. 3(f)] a few more peaks

appear in the X-ray diffraction pattern, with no further change upon shearing up to 1000

s indicating a steady state. All the partially oriented Bragg reflections of this diffraction

pattern could be indexed to a rhombohedral lattice with the space group R3̄m [Table I]

with lattice parameters a = 8.68 nm and c = 15.93 nm, coexisting with the LDα phase. The

lamellar reflection of the LDα phase overlaps with the (003) reflection of R3̄m phase (lamellar

periodicity ∼ c/3 = 5.31 nm) and its coexistence with R3̄m phase in the final steady state

is inferred from the diffuse arcs azimuthally centred at q‖ ∼ 0. We have chosen the indexing

scheme where the first reflection which overlaps with the diffuse scattering peak from the

nano-pores, is indexed as (101) and the third reflection which lies on the q⊥ axis as the

(003) reflection. As seen from Table I, the second reflection which appears as the shoulder

of the (003) reflection can be indexed as the (012) reflection. Moreover the (110) reflection

corresponding to scattering from the in-plane nano-pores of the bilayers lie along q‖, further

confirming the robustness of our indexation to the diffraction peaks of the R3̄m structure.
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The structure of the shear-induced R3̄m phase could be modelled as an ordered mesh phase

with ABC stacking of 3-connected rods [8]. Moreover, the lattice parameters obtained for

the shear induced R3̄m phase is identical to that obtained for the equilibrium R3̄m phase at

a surfactant concentration of φ = 0.53. The value of micellar radius (rm) determined from

this model for the above lattice parameters is 2.10 nm, consistent with the equilibrium value

reported in Ref. [8]. We propose that the decrease in viscosity η during this transition is

due to both, the persistence of the a-orientation of the bilayers that offer a low resistance

to shear as well as the 3D ordering of the nano-pores providing the passage for the liquid to

pass through the connected pores.

To ascertain that the shear-induced LDα phase to R3̄m phase transition is generic, at least

to other cationic-anionic mixed surfactant systems, we have also studied the concentrated LDα

phase (with dl = 5.13 nm and dd = 6.50 nm) formed in CPC-SHN-water system (φ = 0.55

and α = 0.5) [3]. In this case also, we have observed a similar transition from LDα phase to

R3̄m phase [see section-B in the Supplemental Material [28]]. The viscosity η decreases with

time but reaches the steady state after t ∼ 20 s [Supplemental Material [28], Fig. S3(a)], in

a comparatively short period of time (compared to the CTAB-SHN-water system shown in

Fig. 3). Under shear, the LDα phase goes to the coexistence of two R3̄m phases with lattice

parameters a1 = 8.39 nm; c1 = 14.79 nm; a2 = 8.27 nm; c2 = 14.28 nm [Supplemental

Material [28], Table S2].

C. Mechanism of shear-induced ordering of the nano-pores and the LDα phase to

R3̄m phase transition

The shear-induced R3̄m phase obtained in two different systems on applying a constant

shear rate indicates that this transition is a general feature of concentrated random mesh

phases. The distinguishing feature governing the kinetics of the LDα phase to R3̄m phase

transition at a constant shear rate, that may be identified in both these systems from the

time resolved Rheo-SAXS measurements, is the a-orientation of the lamellae prior to the

appearance of the sharp (101) reflection corresponding to the 3D ordering of nano-pores.

In the presence of thermal undulations, the a-orientation of bilayers in the lamellar phase

is usually preferred at high shear rates since the suppression of thermal undulations under

shear is lower in the a-orientation in comparison with the c-oriented state (where the bilayer
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planes are stacked parallel to the V-∇×V plane) [32]. In the simplest model [33, 34], as

the bilayers of LDα phase are formed by in-plane array of rods, shear is likely to increase the

average length of the cylinders forming the 2D hexagonal mesh when the bilayers align along

the shear plane (V-∇V plane). The hexagonal pores have two distinct contributions to the

curvature energy; from the radius of the micellar cylinders, corresponding to a curvature C1

and the radius of the pore that may be visualized as a circle formed by the in-plane array of

rods with a curvature (C2). The free energy per unit area of a monolayer, therefore, is given

by E = (κ/2)(C1 +C2 −C0)
2 + κ̄C1C2 where C0 is the spontaneous curvature, and κ, κ̄ are

the rigidity and Gaussian curvature constants, respectively [34]. A shear driven increase in

the length of the rods implies an increase of the radius of the in-plane nano-pores, leading

to a lower curvature and consequently a lower curvature energy. The lower curvature energy

favors the increment of the in-plane as well as the trans-bilayer correlation length of the nano-

pores. Further, we propose that the locking of the nano-pores into a 3D lattice occurs when

the in-plane correlation length of the nano-pores (dd) is larger than the bilayer periodicity

(dl). A comparison can be drawn here with respect to the equilibrium phase behavior of the

system (CTAB-SHN-water system, α = 1), where the LDα phase to R3̄m phase transition is

observed with decreasing water content (for φ > 0.5). By defining the in-plane periodicity

ratio (Γ) which is determined from the ratio of dd (or lattice parameter a in case of R3̄m) to

the bilayer separation dl for the LDα phase (or lattice parameter c/3 in case of R3̄m), we find

that when the surfactant volume fraction φ increases from 0.5 to 0.53, Γ increases from a

value of 1.2 in LDα phase to 1.4 in R3̄m phase. A crucial aspect favoring our argument would

be an increase in dd with shear observed from the diffuse scattering peak positions. However,

domains of LDα with an increased dd is not observed in our experiments possibly because the

strong flow imposed on the sample at a high shear rate, smears out the diffraction pattern

from these domains, giving rise to a broad and diffuse scattering peak. Nevertheless, it

should be noted that an increase in pore size at a constant water content (φ) implies that

water from the inter-bilayer region will enter into the nano-pores, thus decreasing the bilayer

separation. Hence the observed decrease in the lamellar periodicity by ∼ 3 Åunder shear

reinforces the proposed shear-induced increase in average pore size. Further, the consequent

increase in Γ from 1.3 to 1.6 for the shear-induced R3̄m phase is consistent with the increase

in Γ observed for LDα phase to R3̄m phase transition on decreasing water content [8]. It is

noteworthy that the LDα phase to R3̄m phase transition is absent at lower surfactant volume
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fractions φ < 0.5 as explained above. A robust conclusion that emerges from our studies

on the concentrated random mesh phase is that a shear-induced ordering of the membrane

nano-pores occludes the formation of onion phases.

D. Plastic deformation of R3̄m phase during flow

We will now present the effects of shear flow on the randomly oriented crystallites of

the R3̄m phase for different values of φ [see section-C in the Supplemental Material [28]

for the SALS and the SAXS measurements with the equilibrium R3̄m phase]. Figure 4(a)

shows the stress-controlled flow curve of R3̄m phase (CTAB-SHN-water, φ = 0.53, α = 1)

with a stepwise increment in shear stress with 200 s waiting time at each data point. The

diffraction pattern of the randomly aligned sample at σ = 0 Pa [Fig. 4(b)] progressively

transforms to the perfectly aligned sample (a-oriented state) at σ = 590 Pa with γ̇ ∼ 1 s−1

[Fig. 4(c),(d)]. The X-ray diffraction pattern of the perfectly aligned phase [Fig. 4(d)] has

four diffuse arcs in (101), (012) Bragg rings and has two concentrated arcs in the (003) Bragg

ring, consistent with the rotational symmetry of reciprocal lattice points of R3̄m [35]. At

σ = 660 Pa (corresponding γ̇ ∼ 100 s−1), six arcs are observed in (101), (012) Bragg rings,

respectively, which we propose are due to buckling with two different states of orientation

(i.e. presence of two directors) [Fig. 4(e)], consistent with the observed star-like pattern

in the Rheo-SALS measurement [see section-D in the Supplemental Material [28]]. In the

Rheo-SALS, the pattern is wide in two different directions (nearly orthogonal) which can be

interpreted that the system has two preferred directions of bilayer orientations during flow.

The lattice parameters of R3̄m remain same before and after the buckling [see Table II]. For

σ > 700 Pa, a very rapid avalanche flow is observed.

To probe this transition at different positions in the shear gradient direction in PP geom-

etry, the X-ray has to pass through the sample at an angle to the vorticity direction which

would not be feasible in the present scattering geometry. In order to overcome this difficulty,

we have used the Couette geometry as discussed below. The X-ray beam was translated

along the gradient direction to place the beam at different positions (gx) in the Couette

gap. In the PP geometry, the structural transition occurs at γ̇ ∼ 1 s−1, thus here we have

followed the temporal evolution of the X-ray diffraction patterns under stress relaxation

measurement at γ̇ = 1 s−1 [Fig. 5]. The viscosity shows a monotonic decay up to ∼ 100 s
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and then fluctuates about 20 Pa-s in the steady state. The X-ray diffraction patterns were

recorded after 700 s. Remarkably, an unexpected rich sequence of orientational transition

accompanies the coexistence of two R3̄m phases as discussed below. The sharp isotropic

Bragg rings in the quiescent state transform to the aligned diffraction pattern (c-oriented

state). The X-ray diffraction patterns for four different gx are showing the coexistence of

two R3̄m phases with different lattice parameters [Table III]. The relative orientation of

these two R3̄m phases changes with gx as the incident X-ray beam is taken from the stator

towards the rotor.

We have also performed the shear rate relaxation measurements on an unaligned R3̄m

phase in Couette geometry [Fig. 6]. For σ < 100 Pa, the system flows with a partially

c-oriented R3̄m throughout the gap between shearing cylinders [Fig. 6(c)]. On applying

high stress (σ = 100 Pa), the diffraction pattern shows several Bragg rings [Fig. 6(b)].

Coexistence of two R3̄m phases with different lattice parameters [Table IV] is observed in

all the diffraction patterns for all gx, except for gx = 1.2 mm (here only the starting R3̄m

phase is observed). The relative orientation of these two R3̄m changes with gx as one goes

from stator to the rotor. The presence of six or eight arcs in (101), (012) Bragg rings near

the inner static cylinder [Fig. 6(b)] suggests buckling of R3̄m structure with two different

states of the orientation of nano-crystallites with the same lattice parameters.

Now we correlate the modulation in the X-ray diffraction to the domains’ orientation

deep inside the sample under shear (for example part (d) and (e) of Fig. 4). At a moderate

shear rate R3̄m phase has a-aligned state with all layers facing towards vorticity direction

and the X-ray diffracting in a perpendicular direction to the layer normal will show two very

strong arcs in the (003) Bragg ring and four arcs in (012), (101) Bragg rings due to lattice

symmetry of R3̄m. At a high shear rate, few layers still retain the a-oriented state but

others reorient themselves at a certain angle (∼ 45◦) with the vorticity direction, giving rise

to more than four arcs in (012), (101) Bragg rings. The absence of many arcs in the (003)

Bragg ring can be due to the fact that the (003) diffraction has only two-fold symmetry

and the reoriented layers can easily miss it due to the finite angle with the shear gradient

direction. This scenario is depicted in Fig. S6 in the Supplemental Material [28]. This

model has been used to explain the small-angle scattering data from the Kraton-type block

copolymers during tensile deformation where four arcs were observed in place of two in the

Bragg ring corresponding to the spacing between cylinders [36].
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The concentrated R3̄m phase (CTAB-SHN-water, φ = 0.60, α = 1) also shows the buck-

ling and the coexistence of two R3̄m phases under shear as discussed below. The stress-

controlled flow curve is obtained by varying the stress in the range 700 Pa to 1700 Pa in

30 logarithmic steps with a waiting time of 50 s per data point [Fig. 7(a)]. The unaligned

diffraction pattern transforms to an aligned pattern at σ = 1133 Pa [Fig. 7(b)]. Four diffuse

arcs appear on the (101) Bragg ring of the R3̄m. For σ = 1400 Pa (corresponding γ̇ ∼

1 s−1), six arcs are observed on the (101) Bragg ring as well as the azimuthal spread of

the arcs become smaller [Fig. 7(c)]. For σ = 1600 Pa (corresponding γ̇ ∼ 10 s−1), two

R3̄m phases with different lattice parameters appear [Fig. 7(d)]. The two sets of lattice

parameters a = 8.13 nm, c = 13.80 nm, and a = 7.69 nm, c = 13.80 nm [see Table V] show

lower values compared to the equilibrium lattice parameters (a = 8.30 nm, c = 14.10 nm).

We have followed the temporal evolution of the X-ray diffraction pattern during the stress

relaxation measurement at 1 s−1 [Fig. 8(a)]. Again the sharp isotropic Bragg rings in the

quiescent state [Fig. 8(b)] transform to an aligned diffraction pattern at t ∼ 70 s [Fig. 8(c)].

The oriented (003) reflection along the vorticity direction indicates the transition to the a-

oriented state. At t = 75 s, eight diffuse scattering arcs lying on (101), (012) Bragg rings are

observed [Fig. 8(d)] which is due to buckling of the R3̄m. At t = 80 s [Fig. 8(e)], additional

Bragg rings start appearing indicating the onset of another structural transition. The X-ray

diffraction pattern obtained at t = 550 s shows the stable pattern in the steady-state having

a few additional reflections. Eight arcs are seen on different Bragg rings orientated in the

same azimuthal direction. Considering all the Bragg rings, the diffraction pattern can be

indexed to two R3̄m phases with different lattice parameters [see Table VI].

IV. CONCLUSIONS

To summarize, we have shown that at relatively low concentration, LDα of the CTAB-

SHN-water system goes to the onion phase under shear, similar to the previously reported

studies [22]. During this transition, the system viscosity increases and remains high in the

onion phase. The high concentrated LDα phase transforms to the R3̄m phase under the shear

flow where the nano-pores achieve and maintain their long-ranged in-plane as well as out-

of-plane correlations in the non-equilibrium state. A similar transition is also observed in

the CPC-SHN-water system. We argue that under shear the transition from the random
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mesh phase to the ordered mesh phase is likely to be a more general feature of the mesh

phases and is expected to occur whenever an ordered mesh phase is present adjacent to

the random mesh phase in the equilibrium phase diagram. The absence of a shear induced

transition from the random mesh phase to the ordered mesh phase, in the earlier studies

on different mixed surfactant systems can thus be attributed to the absence of an ordered

mesh phase in the equilibrium phase diagram of those systems [22, 37]. A crucial point to

be noted is that the equilibrium phase transition from a random mesh phase to an ordered

mesh phase occurs with decreasing water content if the correlation length of the defects

increase with surfactant’s weight fraction (φ). Intriguingly, here in our studies, the lamellar

d-spacing decreases under shear only at higher values of φ where the transition appears,

providing us with a clue to the origin of this transition. We propose that the decrease in

the bilayer separation under shear increases the strength of the interaction potential due

to the in-plane modulations (from the mesh-like aggregates forming the bilayer), across the

bilayers locking them into a 3D lattice. This decrease in lamellar spacing can arise possibly

from the squeezing out of the water from the adjacent bilayers, or alternately due to the

increase in the average separation between the defects. Plastic flow of R3̄m phase shows

isomorphic twinning transition having slightly different lattice parameters, giving rise to the

splitting of the Bragg peaks and the six or eight points modulation of the Bragg rings. The

in-situ SALS measurement shows star-like pattern for this transition. We propose that the

star-like pattern in the SALS and the modulation of the (101), (012) Bragg rings with more

than four arcs is due to different states of the director’s orientation. This can be visualized

as buckling of the ordered mesh phase under shear. We cannot rule out completely the

other possibility that the bilayers of the ordered mesh phase under shear roll into the multi-

lamellar cylinders arranged in hexagonal or tetragonal array giving rise to 6 or 8 arcs in

the (101), (012) Bragg rings. In that case, large fluctuations in the viscosity even after a

long time (Fig. 6, 8) can be due to the changing orientation of these cylinders under shear

resulting in oscillations/fluctuations. The decrease in viscosity, however, does not support

the formation of cylinders since rolling up of lamellae into cylinders usually increases the

resistance to flow and results in increased viscosity [38]. To this end, we have performed

the Rheo-SAXS measurement of low concentrated R3̄m phase using the Couette geometry

to probe the directionality of the twinning and buckling with respect to the flow. The

concentration was so chosen as to avoid breaking of the glass Couette geometry due to

13



high viscosity. With the Couette geometry we have observed c-oriented state of the R3̄m

phase at a low value of shear rate and then observed isomorphic twinning of R3̄m phase with

substantial variation in the relative orientation of the directors as one goes from stator to the

rotor. This suggests that the buckling angle can vary in velocity gradient direction and also

the crystallites corresponding to different directors may have different lattice parameters.

We further surmise that the decrease in the lattice parameters under shear leads to the

expulsion of the excess solvent creating a lubrication layer near the moving plate. Hence

the structural transitions discussed above brings about a regime of total wall slip and an

accompanying avalanche flow due to the sharp increase in the shear rate. We hope that our

experimental studies will motivate quantitative theoretical understanding of shear induced

transitions in concentrated mixed surfactant systems.
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FIG. 1. Shear rate controlled flow curve; (a) viscosity (η) vs shear rate (γ̇) of the random mesh

phase (LDα ) formed in CTAB-SHN-water system, φ = 0.40 and α = 1, in PP geometry with 30

s waiting time at each data point. Filled symbol and empty symbol represent increasing and

decreasing γ̇ respectively. Stress relaxation measurements at γ̇ = 10 s−1, with the same system

and geometry; for φ = 0.30, (b) viscosity (η) vs time (t) and the corresponding X-ray diffraction

patterns at (c) t = 0 s, (d) t = 100 s, (e) t = 1000 s. For φ = 0.40, (f) η vs t and the corresponding

diffraction patterns at (g) t = 0 s, (h) t = 10 s, (i) t = 1000 s.
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(a) (c)(b)

FIG. 2. Small-Angle Light Scattering patterns under stress relaxation measurement similar to Fig.

1(f), namely, φ = 0.40, α = 1, γ̇ = 10 s−1: for (a) t = 0 s, (b) t = 10 s, (c) t = 500 s.

(b)
101

012

003

110

104

006
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(c) (d)
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FIG. 3. Stress relaxation measurement at γ̇ = 50 s−1 in PP geometry, CTAB-SHN-water system

(α = 1, φ = 0.50). (a) η vs t and the corresponding X-ray diffraction patterns at (b) t = 0 s,

(c) t = 50 s, (d) t = 125 s, (e) t = 515 s, (f) t = 850 s. R3̄m lattice planes are marked near the

observed Bragg rings in (f).
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TABLE I. Indexing the X-ray diffraction patterns shown in Fig. 3, obtained by shearing the LDα

phase (CTAB-SHN-water system, α = 1, φ = 0.5) at γ̇ = 50 s−1. The average in-plane nano-pore

separation (dd) and the lamellar d-spacing (dl) are marked. For the patterns at t = 515 s and at

t = 850 s revealing the shear-induced R3̄m phase, the calculated d-spacings (dcal) are obtained

using the relation (1/d)2 = (4/3)(h2 + hk + k2)/a2 + l2/c2 with the condition −h + k + l = 3n,

where n is an integer. The calculated unit cell parameters a = 8.68 nm, c = 15.93 nm are same for

both.

t dobs hkl dcal error intensity

(s) (nm) (nm) (%)

0 7.67(dd) 0 broad

5.49(d) 0 very strong

2.76(d/2) 0.5 strong

50 7.92(dd) 0 broad

5.31(d) 0 very strong

2.68(d/2) 0.9 strong

515 7.79(dd) 0 broad

6.80 101 6.80 0 very strong

5.49 012 5.47 0.4 strong

5.31 003 5.31 0 very strong

4.39 110 4.34 1.1 weak

2.68 006 2.66 0.8 strong

850 7.79(dd) 0 broad

6.80 101 6.80 0 very strong

5.49 012 5.47 0.4 very strong

5.31 003 5.31 0 very strong

4.39 110 4.34 1.1 strong

3.77 021 3.66 2.9 weak

3.53 104 3.52 0.3 strong

3.02 015 2.93 3 weak

2.66 006 2.66 0 strong
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(a)
σ

(b) (c) (d)

(e)

FIG. 4. Stress controlled flow curve with 200 s waiting time at each data point in PP geometry

for CTAB-SHN-water system, α = 1, φ = 0.53: (a) σ vs γ̇, X-ray diffraction patterns for (b) σ = 0

Pa, (c) σ = 470 Pa, (d) σ = 590 Pa, (e) σ = 660 Pa.

22



(a)

(b) (c) (d)

(e)

FIG. 5. Stress relaxation of R3̄m phase (CTAB-SHN-water system, α = 1, φ = 0.53) at γ̇ = 1

s−1 in Couette geometry: (a) η vs t and the corresponding X-ray diffraction patterns obtained

during 700 s ≤ t ≤ 850 s with incident X-ray beam at different distances (gx) from the inner static

cylinder at (b) gx = 0.6 mm, (c) gx = 0.8 mm, (d) gx = 1.0 mm, (e) gx = 1.2 mm.
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TABLE II. Indexing the X-ray diffraction patterns shown in Fig. 4 for different σ.

σ dobs hkl dcal error intensity unit cell

(Pa) (nm) (nm) (%) (nm)

0 7.00 101 7.00 0 very strong a = 8.95

5.65 012 5.62 0.5 weak c = 16.32

5.44 003 5.44 0 strong

4.47 110 4.47 0 very strong

3.78 021 3.77 0.3 strong

2.81 024 2.81 0 weak

2.28 220 2.24 1.8 weak

470 7.00 101 7.00 0 very strong a = 8.96

5.61 012 5.60 0.2 weak c = 16.20

5.40 003 5.40 0 strong

4.47 110 4.48 0.2 very strong

3.78 021 3.77 0.3 strong

3.59 104 3.59 0 strong

2.97 015 2.99 0.7 weak

2.69 006 2.70 0.4 weak

590 7.00 101 7.00 0 very strong a = 9.00

5.61 012 5.57 0.7 strong c = 15.93

5.31 003 5.31 0 very strong

4.47 110 4.50 0.7 strong

2.66 006 2.66 0 strong

660 7.00 101 7.00 0 very strong a = 8.98

5.57 012 5.59 0.4 very strong c = 16.05

5.35 003 5.35 0 very strong

4.45 110 4.49 0.9 very strong

3.78 021 3.78 0 weak

3.55 104 3.57 0.6 strong

2.96 015 2.97 0.3 weak

2.67 006 2.68 0.4 very strong
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TABLE III. Indexing the X-ray diffraction patterns shown in Fig. 5(b) for gx = 0.6 mm. Peaks

are fitted to set of two R3̄m with calculated unit cell parameters as a1 = 10.58 nm, c1 = 18.60 nm

(1st R3̄m) and a2 = 8.50 nm, c2 = 14.25 nm (2nd R3̄m).

1st R3̄m 2nd R3̄m

dobs hkl dcal hkl dcal error intensity

(nm) (nm) (nm) (%)

8.22 101 8.22 0 very strong

6.54 012 6.53 101 6.54 0.2, 0 very strong

6.20 003 6.20 0 very strong

5.22 110 5.29 1.3 very strong

5.10 012 5.12 0.4 very strong

4.75 003 4.75 0 very strong

2.93 006 3.10 113 3.17 5.5, 7.6 strong
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(a)

1.2 mm1.0 mm0.8 mm0.6 mm

(b)

(c)

FIG. 6. Shear rate relaxation for R3̄m phase in CTAB-SHN-water system, α = 1, φ = 0.53 with

Couette geometry: (a) η vs t at different applied σ. X-ray diffraction patterns for different gx are

shown for (b) σ = 100 Pa and (c) σ = 75 Pa. For each measurement a fresh sample was loaded

and the SAXS was done during 300 s ≤ t ≤ 450 s.
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TABLE IV. Indexing the X-ray diffraction patterns corresponding to gx = 0.8 mm for different σ

shown in Fig. 6. For σ = 100 Pa, peaks are fitted to set of two R3̄m phases with calculated unit

cell parameters as a1, c1 (1st R3̄m) and a2, c2 (2nd R3̄m). Lamellar peaks are marked by d and

d/2. Peak intensity vs, s, and w represent very strong, strong, and weak respectively.

1st R3̄m 2nd R3̄m

σ dobs hkl dcal hkl dcal error intensity unit cell

(Pa) (nm) (nm) (nm) (%) (nm)

75 6.86 101 6.86 0 s a = 8.84

5.44 012 5.44 0 w c = 15.48

5.16 003 5.16 0 vs

100 6.73 101 6.73 0 vs a1 = 8.65

5.65 101 5.65 0 vs c1 = 15.36

5.35 012 5.36 0.19 vs a2 = 7.43

5.12 003 5.12 0 vs c2 = 11.79

4.42 012 4.35 1.58 vs

4.34 110 4.32 0.46 w

3.93 003 3.93 0 vs

3.76(d) vs

3.72 110 3.72 0 vs

3.38 202 3.37 0.30 vs

2.82 015 2.84 0.70 s

2.62 006 2.56 2.29 vs

2.54 030 2.50 1.58 vs

2.21 015 2.21 0 s

1.98 006 1.96 1.01 s

1.86(d/2) 401 1.86 0 w
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σ
(a)

(b) (c)

(d)

FIG. 7. (a) Stress-controlled flow curve for R3̄m phase formed in CTAB-SHN-water at α = 1, φ

= 0.6. X-ray diffraction patterns for (b) σ = 1133 Pa, (c) σ = 1400 Pa, (d) σ = 1600 Pa.
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TABLE V. Indexing the X-ray diffraction patterns shown in Fig. 7(d). Peaks are fitted to set of

two R3̄m phases with calculated unit cell parameters as a1 = 8.13 nm, c1 = 13.80 nm (1st R3̄m)

and a2 = 7.69 nm, c2 = 13.80 nm (2nd R3̄m).

1st R3̄m 2nd R3̄m

dobs hkl dcal hkl dcal error intensity

(nm) (nm) (nm) (%)

6.27 101 6.27 0 very strong

6.00 101 6.00 0 very strong

4.82 112 4.79 0.6 very strong

4.60 003 4.60 003 4.60 0, 0 very strong

4.09 110 4.06 0.7 weak

3.89 110 3.85 1.0 weak

3.48 021 3.41 2.0 strong

3.26 021 3.24 0.6 strong

3.08 104 3.06 0.6 strong

2.30 006 2.30 0 strong
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(a) (b) (c)

(d) (e) (f )

FIG. 8. (a) η vs time of CTAB-SHN-water system, α = 1, φ = 0.60 at γ̇ = 1 s−1 in PP geometry.

X-ray diffraction patterns at (b) t = 0 s, (c) t = 70 s, (d) t = 75 s, (e) t = 80 s, (f) t = 500 s. The

buckling of R3̄m can be observed.
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TABLE VI. Indexing the X-ray diffraction patterns shown in Fig. 8(f). Peaks are fitted to set of

two R3̄m phases with calculated unit cell parameters as a1 = 7.76 nm, c1 = 13.80 nm (1st R3̄m)

and a2 = 7.38 nm, c2 = 13.17 nm (2nd R3̄m).

1st R3̄m 2nd R3̄m

dobs hkl dcal hkl dcal error intensity

(nm) (nm) (nm) (%)

6.04 101 6.04 0 very strong

5.75 101 5.75 0 very strong

4.83 012 4.81 0.4,0 very strong

4.60 003 4.60 012 4.59 0,0.22 very strong

4.39 003 4.39 0 very strong

3.08 104 3.07 021 3.11 0.32,0.97 weak

2.29 006 2.30 024 2.29 0.43, 0 strong
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VII. SUPPLEMENTAL MATERIAL

Reflecting Crystal

X - Ray beam

Rotating
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FIG. S1. (a) Schematic of rheo-SALS setup. (b) Rheo-SAXS setup (static) with PP vespel geome-

try. (c) With Couette glass geometry, rheo-SAXS setup on a motorized stage to do the X-ray scan

across the gap by varying the distance (dx) of the X-ray from the inner static cylinder.
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A. Estimation of defect’s volume using the right rhombic prism model [Fig. S2]

Using the surfactant weight fraction φ and the density ratio fρ, it can be shown from

the Fig. S2 that if Vw is the total volume occupied by water and Vs is the total volume

occupied by surfactant then we have,

⇒ Vw
Vs

=
fρ
φ

; where fρ =
ρs
ρw

and φ =
Ws

Ww

(1)

⇒ (
√

3/2)d2d(dl − 2r) + πR22r

((
√

3/2)d2d − πR2)2r
=
fρ
φ

(2)

⇒ πR22r(fρ + φ) = (
√

3/2)d2d(2rfρ − (dl − 2r)φ) (3)

⇒ defect volume ∼ πR22r =
(
√

3/2)d2d(2rfρ − (dl − 2r)φ)

(fρ + φ)
(4)

(5)

The Table S1 shows the calculated defect volume for different surfactant concentration using

the measured in-plane defect correlation length (dd) and the bilayer periodicity (dl) of LDα

phase or using the measured lattice parameters of R3̄m phase at equilibrium.

TABLE S1. Taken value of r = 2.1 nm (from literature) and fρ = 1.03 (measured).

system φ the phase dd or a (nm) dl or c/3 (nm) defect volume (nm)

CTAB-SHN-Water 0.40 LDα 6.93 7.30 90.17

0.50 LDα 7.67 5.49 123.14

0.53 R3̄m 8.95 5.44 163.90

0.60 R3̄m 8.30 4.70 148.03

CPCl-SHN-Water 0.55 LDα 6.50 5.13 88.74
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FIG. S2. right rhombic prism of sides dd, dd with angle 60◦ and height dl. Surfactant layer of

thickness 2r has a cylinder of diameter 2R at the centre filled with water. Top and bottom space

out side the surfactant is filled with water.
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B. shear-induced LDα phase to R3̄m phase transition in CPC-SHN-water system

With PP geometry, shear-induced LDα phase to R3̄m phase transition in the CPC-SHN-

water system (α = 0.5, φ = 0.55) is observed during the stress relaxation at γ̇ = 50 s−1

[Fig. S3(a)]. In equilibrium, as shown in Fig. S3(b), the X-ray diffraction pattern reveals an

unoriented lamellar with d-spacing of 5.13 nm, coexisting with the diffuse peak from nano-

pores with 6.50 nm liquid-like average correlation length. A nearly a-oriented diffraction

pattern is obtained at t ∼ 10 s, with the average orientation of lamellar peaks along q⊥

[Fig. S3(c)]. The azimuthal spread of the lamellar peak decreases upon further shearing

and at t ∼ 20 s [Fig. S3(d)], a sharp peak comes up after the diffuse peak indicating 3D

ordering of nano-pores getting established under shear similar to the observation in the case

of CTAB-SHN-water system (discussed in the main text). After t = 30 s, other higher order

peaks start appearing [Fig. S3(e)]. All the sharp reflections obtained at t ∼ 40 s [Fig. S3(f)],

can be indexed to two R3̄m phases with lattice parameters a1 = 8.39 nm; c1 = 14.79 nm;

a2 = 8.27 nm; c2 = 14.28 nm [Table S2].

TABLE S2. Indexing the X-ray diffraction pattern of the shear-induced R3̄m phase [Fig. S3(f)],

obtained by shearing the LDα phase (CPC-SHN-water system, α = 0.5, φ = 0.55) at γ̇ = 50 s−1.

Peaks are fitted to set of two R3̄m phases with the calculated unit cell parameters as a1 = 8.39

nm, c1 = 14.79 nm (1st R3̄m) and a2 = 8.27 nm, c2 = 14.28 nm (2nd R3̄m).

1st R3̄m 2nd R3̄m

dobs hkl dcal hkl dcal error intensity

(nm) (nm) (nm) (%)

6.52 101 6.52 0 strong

6.40 101 6.40 0 strong

5.06 012 5.18 012 5.06 2.3, 0 very strong

4.93 003 4.93 0 very strong

4.76 003 4.76 0 very strong

3.20 113 3.19 202 3.20 0.3, 0 weak

3.10 113 3.12 0.6 weak

2.53 006 2.47 122 2.53 2.4, 0 weak
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(a) (b) (c)

(d) (e) (f )

FIG. S3. With PP geometry, shear-induced LDα phase to R3̄m phase transition in CPC-SHN-water

system (α = 0.5, φ = 0.55) is observed during stress relaxation measurement at γ̇ = 50 s−1. (a) η

vs t plot and the corresponding X-ray diffraction patterns at (b) t = 0 s, (c) t = 10 s, (d) t = 20 s,

(e) t = 30 s, (f) t = 40 s are shown.
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C. Equilibrium study of the rhombohedral mesh phase using Rheo-SALS and

Rheo-SAXS setups

Figure S4 shows the SALS and the SAXS patterns from the ordered mesh phase (weight

fraction φ = 0.53 and α = 1) at equilibrium just before the rheology measurements. The

equilibrium patterns are azimuthally isotropic with respect to the central beam spot and

independent of the geometry in use, a typical signature of randomly oriented crystalline

domains. The positions of the SAXS rings in q-space can be indexed to a rhombohedral unit

cell having the space group symmetry R3̄m.

0.05 0.10 0.15 0.20 0.25

10-1

100

101

102

 

 
I (

a.
u.

)

q ( A   )
o -1

(1
01

)

(0
12

)
(0

03
)

(1
10

)

(0
21

)
(1

04
)

(0
15

)

(0
06

)

(c)(a) (b)

FIG. S4. (a) Small angle light scattering (SALS) pattern and (b) small angle X-ray scattering

(SAXS) pattern from the rhombohedral phase formed by CTAB-SHN-Water ternary system pre-

pared with α = 1, φ = 0.53 at 30◦ C are shown. These patterns were captured while the samples

were resting between the rheometer plates. (c) Intensity vs wave vector (q) plot of the SAXS shows

the positions of the isotropic rings in q-space. Fitted lattice panes (having R3̄m symmetry) are

indicated.
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D. Rheo-SALS during the shear stress controlled flow curve measurement with

R3̄m phase

The rheo-SALS measurements were performed separately in PP glass geometry with VH

configuration. Figure S5 shows the shear stress controlled flow curve where the shear stress

was varied from 100 Pa to 1000 Pa with a waiting time of 200s at each point. The unaligned

scattering pattern [Fig. S5(a)] transforms to a partially aligned at σ = 200 Pa [Fig. S5(b)]

and then shows a-oriented bilayers, bilayer planes parallel to the velocity-velocity gradient

plane at 300 Pa [Fig. S5(c)]. Interestingly, at 600 Pa and above a star-like pattern appears

[Fig. S5(d)].

(a) (b) (c) (d)

FIG. S5. SALS patterns obtained during the shear stress controlled flow curve measurement, are

shown for different σ: (a) 0Pa, (b) 200Pa, (c) 300Pa, (d) 600Pa.
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FIG. S6. (a) Schematic of a-orientated R3̄m in PP geometry is shown, and (b) the corresponding

observed SAXS pattern with four arcs in (101), (012) rings is shown. (c) Buckling of R3̄m is

depicted, and (d) the corresponding pattern with six arcs in (101), (012) rings is shown. (e) Top

view of the buckled state of R3̄m is shown, where each bilayer is represented by a straight line.

Different directions of the geometry are indicated.
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