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During one of the meetings 
of a problem solving group 
in our school, we were 
given a problem from 
the British Mathematics 
Olympiad Round 2, 2004. 
We present three solutions 
to the problem. The first 
one was obtained during 
the session itself, and the 
other two were developed 
through discussions. In a 
follow-up article, we shall 
explore another BMO 
problem which we solved 
using a similar idea.
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Problem 1. Given real numbers a, b, c with a+ b+ c = 0,
prove that

a3 + b3 + c3 > 0 if and only if a5 + b5 + c5 > 0.

Solution 1. This is an ‘ad hoc’ solution. Let a+ b+ c = 0;
then c = −(b+ a). We assume (without any loss in
generality) that a ≥ b ≥ c. It follows that a ≥ 0. If a = 0,
then b = 0 = c as well, in which case we have
a3 + b3 + c3 = 0 = a5 + b5 + c5; so this case need not be
considered. Hence we may as well suppose that a > 0. We
now have,

a3 + b3 + c3 = a3 + b3 − (a+ b)3

= −3ab(a+ b). (1)

Next,

a5 + b5 + c5 = a5 + b5 − (a+ b)5

= −5a4b− 10a3b2 − 10a2b3 − 5ab4

= −5ab(a+ b)
(
a2 + b2 + ab

)
. (2)

We claim that a2 + ab+ b2 > 0. For:

• If b = 0, then a2 + ab+ b2 = a2 > 0, since a > 0.

• If b > 0, then ab > 0, so a2 + b2 + ab > 0.

• If b < 0, then c < 0 as well, since c ≤ b (by
supposition). Since b = −a− c > −a, it follows that
|b|< |a|. This implies |ab|< |a2|, therefore, a2+ ab > 0.
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Thus a2 + ab+ b2 > 0 as claimed. Now, from (1) and (2), we observe that

a5 + b5 + c5 > 0 ⇐⇒ 5ab(a+ b) < 0 ⇐⇒ ab(a+ b) < 0

⇐⇒ −3ab(a+ b) > 0 ⇐⇒ a3 + b3 + c3 > 0.

Solution 2. Here we follow the method given in [2] (Higher Algebra, Hall and Knight). Consider the
following identity

(1+ ax)(1+ bx)(1+ cx) = 1+ qx2 + rx3,
where q = ab+ bc+ ca, r = abc (there is no x-term since a+ b+ c = 0). Taking logarithms of both sides,
we get:

log(1+ ax) + log(1+ bx) + log(1+ cx) = log
(
1+ qx2 + rx3

)
.

We now use the logarithmic series expansion (valid for all |x|< 1),

log(1+ x) = x− x2

2
+

x3

3
− · · ·

for each term. (Note. For the series expansion to work, we also need to have |ax|< 1, |bx|< 1, . . .,
|rx3|< 1. This does not present a problem, because a, b, c, q, r are fixed quantities, and we can always take
x to be small enough so that these inequalities are satisfied.) Equating the coefficients of xn on both sides,
we find that

(−1)n−1 (an + bn + cn)
is equal to n times the coefficient of xn in

(
qx2 + rx3

)
− 1

2
(
qx2 + rx3

)2
+

1
3
(
qx2 + rx3

)3 − · · · .

Now put n = 2, 3, 4, 5 in the above; we get the following:

a2 + b2 + c2 = −2q,

a3 + b3 + c3 = 3r,

a4 + b4 + c4 = 2q2,

a5 + b5 + c5 = −5qr.

We observe that
3
(
a2 + b2 + c2

) (
a5 + b5 + c5

)
= 3(−2q)(−5qr) = 30q2r,

and also
5
(
a3 + b3 + c3

) (
a4 + b4 + c4

)
= 30q2r.

Thus we have established the following beautiful relation: if a+ b+ c = 0, then

5
(
a3 + b3 + c3

) (
a4 + b4 + c4

)
= 3

(
a2 + b2 + c2

) (
a5 + b5 + c5

)
.

Since a4 + b4 + c4 and a2 + b2 + c2 are never negative, and are 0 precisely when a, b, c are all 0, the
assertion in the problem follows.

Solution 3. The strategy is to use the symmetric functions of the roots of a polynomial. First we denote
for all k ≥ 0,

Sk = ak + bk + ck.
Thus we have S0 = 3, S1 = 0, S2 = a2 + b2 + c2, etc., and a, b, c are the roots of the cubic

f(x) = (x− a)(x− b)(x− c) = x3 − S1x2 + (ab+ bc+ ca)x− abc,

i.e., the cubic
f(x) = x3 + (ab+ bc+ ca)x− abc.
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Therefore, we have
a3 + (ab+ bc+ ca)a− abc = 0.

Multiplying by ak, we get,
ak+3 + (ab+ bc+ ca)ak+1 − (abc)ak = 0, (3)

for k ≥ 0. Similarly, we have

bk+3 + (ab+ bc+ ca)bk+1 − (abc)bk = 0. (4)

and
ck+3 + (ab+ bc+ ca)ck+1 − (abc)ck = 0. (5)

By adding these three relations, we get, for k ≥ 0:

Sk+3 = −(ab+ bc+ ca)Sk+1 + (abc)Sk. (6)

Put k = 2 in (6):
S5 = −(ab+ bc+ ca)S3 + (abc)S2. (7)

Now observe that

2(ab+ bc+ ca) = (a+ b+ c)2 −
(
a2 + b2 + c2

)
= 0− S2 = −S2,

which simplifies to

ab+ bc+ ca = −1
2
S2.

and from a3 + b3 + c3 = 3abc, we get

abc =
1
3
S3.

Now, using these in equation (7), we have

S5 =
1
2
S2S3 +

1
3
S2S3 =

5
6
S2S3 (8)

Now note that S2 = 0 implies a = b = c = 0. In that case, we get S3 = S5 = 0. If a, b, c are not all 0,
then S2 is a positive number, so S5 is a positive number times S3. It follows that

S5 > 0 ⇐⇒ S3 > 0,

as required.

Comment from the editor. Observe that the strategy followed in the third solution is the same as that
followed in the “extreme algebra” problem explored elsewhere in this issue.

Exercises for the reader
(1) Given real numbers a, b, c with a+ b+ c = 0, prove that

a7 + b7 + c7 > 0 ⇐⇒ a5 + b5 + c5 > 0.

(2) Given real numbers a, b, c, d with a+ b+ c+ d = 0, prove that

a3 + b3 + c3 + d3 > 0 ⇐⇒ a5 + b5 + c5 + d5 > 0.

(3) Given real numbers a, b, c with a+ b+ c = 0, find all k ∈ N, such that

ak + bk + ck > 0 ⇐⇒ a3 + b3 + c3 > 0.

(4) Given real numbers a, b, c with a+ b+ c = 0, find all k,m ∈ N, such that

ak + bk + ck > 0 ⇐⇒ am + bm + cm > 0.
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