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A Maverick Mathematician

In these strange and troubled times, when the world is reeling 
under an infectious disease and a quarter million have died from 
Covid-19 (as of May 1, 2020), it is perhaps inappropriate to 

mourn the death of a single individual who died of complications 
caused by the coronavirus. However, for the world of mathematics, 
this individual was very special indeed. John Conway stood out 
among the community of mathematicians, a legend in his lifetime.

The Mathematical Artist of Play:   
A TRIBUTE TO JOHN 
HORTON CONWAY

26 DECEMBER 1937 – 11 APRIL 2020

John Horton Conway at Princeton University in 2009.  
Credit: Princeton University, Office of Communications, Denise Applewhite.
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Stephen Miller, a mathematician at Rutgers 
University, said: “Every top mathematician was 
in awe of his strength. People said he was the 
only mathematician who could do things with 
his own bare hands.” Conway liked to start 
from first principles, with very few concepts and 
build mathematical edifices. He loved to play 
games, preferably silly children’s games, all day 
long. He would spend whole summers going 
from one mathematics camp to another, one for 
middle school children here and one for teenage 
students, and in all of them, he would play 
games with children, pose and solve puzzles. He 
would carry all sorts of things with him: decks of 
cards, dice, ropes, coins, coat hangers, sometimes 
a Slinky, even a miniature toy bicycle. These 
were all props he would use for explaining ideas, 
though Conway insisted that they were more for 
his own amusement. 

Unlike most other mathematicians, Conway 
was always obsessed with seemingly trivial 
concerns. He would be constantly factoring large 
numbers in his head. He could recite more than 
a 1000 digits of π from memory. He developed 
algorithms you could use to calculate the day of 
the week for any given date (in your head!), to 
count the number of steps while you climb stairs 
without actually counting, . . . But importantly, 
Conway claimed that it was such thinking 
that led to his mathematical research, and his 
colleagues at Princeton agree.

If anyone has ever approached all mathematics 
in a spirit of play, it is Conway. He also led the 
world in the mathematics of playing games.

Games as Mathematics
Consider Nim, a two player game, where there 
are a number of heaps of sticks between them. 
It is a turn based game. A player chooses one of 
the heaps, removes some non-zero number of 
sticks from it, then the other player gets her turn. 
When it is a player’s turn to move, and there 
are no sticks left, he loses; that is, the last one 
who makes a move wins. Here is the question. 

Starting from any initial configuration of heaps, 
does one of the players have a winning strategy: 
a way to play in such a way that no matter what 
moves the other player makes, she is assured of a 
win?

How do we analyse such games? Suppose you 
are faced with the situation (1,1), when there are 
two heaps, each with one stick. This is a losing 
position for you, since no matter which heap 
you reduce (to empty), the opponent can move 
and then you have no move. Now, (2,2) is also 
losing since no matter what move you make, 
the opponent can copy that move and bring you 
either to (1,1) or to the empty configuration. 
Thus, in general, we can argue that the Nim 
position (m, n) is winning to a player iff m ≠ n.

But this means that (m, m, n) is winning since 
you can remove the third heap entirely and 
present a losing position to the opponent. 
Similarly (m, m, n, n) is losing: we can consider 
it as (m, m) + (n, n) or (m, n) + (m, n), consisting 
of two subgames. Note that player II has a 
copycat strategy in the other subgame and hence 
cannot lose.

As it turns out, this operation + yields a group 
structure on these games, where every element 
is its own inverse. (Comment. It is known 
that such a group is necessarily abelian, i.e., 
commutative.) The mathematical study of such 
bipartisan games (where both players have 
identical moves at any configuration) leads to 
very interesting combinatorics and algebra. The 
game of Nim was solved by Bouton in 1902 
[2]. For tasting the mathematical adventure of 
both playing such games and analysing them, 
there is no better introduction than the book 
WinningWays for yourMathematical Plays by 
Conway, Berlekamp and Guy [1].

Conway is credited with founding the area of 
Combinatorial Game Theory, a rich and beautiful 
subject of mathematical study. To give you a 
teaser, I have already mentioned that you can 
place an abelian group structure on games. 
There is a distinguished subgroup of games 
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called numbers which can also be multiplied and 
which form a field: this field contains both the 
real numbers and the ordinal numbers. In fact, 
Conway’s definition generalizes both Dedekind 
cuts and von Neumann ordinals. All Conway 
numbers can be interpreted as games which can 
actually be played in a natural way; in a sense, 
if a game is identified as a number, then it is 
“so well understood that it would be boring 
to actually play it!” Conway’s theory is deeply 
satisfying from a theoretical point of view, and 
at the same time it has useful applications to 
specific games such as Go. There is a beautiful 
microcosmos of numbers and games which are 
infinitesimally close to zero, and ones which 
are infinitely large. The theory also contains the 
classical and complete Sprague-Grundy theory of 
impartial games.

To my taste, the slim volume Games and 
Numbers by Conway [3] is nothing less than a 
masterpiece of mathematics. I recall seeing it 
in the library during my graduate student days, 
spending an entire day reading it right there, and 
rushing out to get it photocopied. Donald Knuth 
based a mathematical novel on these numbers 
[7]. Knuth called these numbers surreal, because 

in this number field, every real number is 
surrounded by a whole lot of new numbers that 
lie closer to it than any other ‘real’ value does.

But to reiterate what was said earlier, playing 
games was intrinsically interesting to Conway, 
independent of all this algebraic structure. 
He created many games for people to play, 
especially for school children, and would spend 
enormous amounts of time on designing them. 
In fact, Conway is best known to the public for 
designing the Game of Life, a great boon to 
screen savers.

Game of Life
This is a very simple game. Take a sheet of grid 
paper, and keep a pencil and eraser with you. 
We have cells on the grid, each having eight 
neighbours. In this game, every cell can be alive 
or dead at any instant. There are (only!) two 
rules:

• A dead cell having exactly three live 
neighbours comes alive at the next instant; 
otherwise it stays dead.

• An alive cell that has two or three alive 
neighbours stays alive; else it dies. 

John Horton Conway.  
Credit: Thane Plambeck, https://www.flickr.
com/ photos/thane/20366806/, CC BY 2.0, 
https://commons.wikimedia. org/w/index.
php?curid=13076802
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Try out the evolution of the game starting from 
some random initial configurations. (You could 
do this using pencil and paper; or you could use 
the interactive website [9].)

Questions: If you start with any configuration 
of alive and dead cells, can we predict whether 
we would keep getting new configurations, 
or settle down to a specific configuration, or 
keep oscillating between some configurations? 
Pointing to a cell, can we figure out whether it 
will live for ever after some finite point in time? 
We can ask a variety of such questions. It turns 
out that there is no uniform algorithm to answer 
any of these questions. In fact, the Game of Life 
is exactly as powerful as the digital computer 
in a theoretical sense, and there is a variety 
of questions of this kind linking the game to 
computation theory and complexity theory.

In an interview in 2014 [4], Conway said he 
tinkered with the rules for “about 18 months of 
coffee times” before he arrived at such simplicity. 
He did not use any computers during this search 
either, he hand calculated the evolution of many 
configurations. This was typical of Conway, 
the search for extreme simplicity encapsulating 
almost universal capability, and doing it all ‘in 
the head.’

Mathematics as Play
Conway was born in Liverpool, England and 
went to study in Cambridge on a scholarship. In 
the 1960s, he worked on sphere packing. Suppose 
that you want to fit as many circles as possible 
into a region of the Euclidean plane. How 
can one do this? Divide the plane into one big 
hexagonal grid and inscribe the largest possible 
circle inside each hexagon. The grid, called a 
hexagonal lattice, serves as an exact guide for 
the best way to pack circles in two-dimensional 
space. In the 1960s, John Leech came up with 
a similar lattice for the most efficient packing of 
24-dimensional spheres in 24-dimensional space.

Conway decided to study the symmetry group of 
the Leech lattice. It is called the Conway Group 
now. This led him to study the properties of 
similar groups.

In a paper in 1979, Conway and Simon Norton 
conjectured a deep and surprising relationship 
between the properties of the so-called monster 
group and that of an object in number theory 
called the j-function. The paper was titled 
Monstrous Moonshine! The monster group 
is a collection of symmetries that appear in 
196,883-dimensional space. A decade later, 
Borcherds proved the conjecture, which won him 
the Fields medal in 1998.

Another area of mathematics in which Conway 
made an amazing contribution was knot theory, 
a branch of topology. Knots can be thought of 
as closed loops of string. A fundamental problem 
in the area is that of knot equivalence: can 
one apply finitely many allowed operations to 
obtain one from another? Mathematicians have 
different kinds of tests they can apply that act 
as invariants: if applying them to a pair of knots 
leads to different knots, the pair was different. 
One such test is called the Alexander polynomial, 
which is effective but not unique: the same 
knot could give rise to different Alexander 
polynomials. Conway fixed this, leading to what 
is known as a Conway polynomial, a fundamental 
tool in knot theory now. Another interesting 
contribution of Conway was an arrangement of 
knots, akin to the periodic table, that makes their 
properties easy to study.

In collaboration with Kochen and Specker, 
Conway proved the so-called Free Will Theorem 
in quantum mechanics: in crude terms, it states 
that if you had the information about the states 
of every particle in the universe up to this point, 
you would not be able to predict what their states 
will be a second from now. (Stated in still cruder 
terms, it states that if human beings have free 
will, then so do all elementary particles.)

Overall, Conway was active in the theory of 
finite groups, knot theory, number theory, 
combinatorial game theory and coding theory, 
with some work also in geometry, geometric 
topology, algebra, analysis, algorithmics and 
theoretical physics. The vast range attests to 
Conway’s ability to work on pretty much any 
mathematically posed question.
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Conway was at Princeton University for the 
last quarter century, interacting intensively 
with students and colleagues. His biography by 
Siobhan Roberts [8] is a deeply inspiring story.

Extreme Elegance
Conway was known for his obsession for 
reducing proofs to the simplest terms. In 2014, 
Karamzadeh even argued that Conway’s proof of 
Morley’s theorem is the ‘simplest possible’ proof. 
Conway and Shipman [5] developed the idea of 
Extreme proofs. They consider ‘values’ we attach 
to proofs: brevity, generality, constructiveness, 
visuality, nonvisuality, ‘surprise,’ elementarity, 
and so on.

Indeed, because at any given time there are only 
finitely many known proofs, we may think of 
them as lying in a polyhedron (in our pictures, 
a polygon), and the value functions as linear 
functionals, as in optimization theory, so that 
any value function must be maximized at some 
vertex. We shall call the proofs at the vertices of 
this polygon the extreme proofs.

They go on to study 7 extremal proofs of the 
assertion that √2 is irrational, tabulating them 
and explaining the associated value functions.

Last Words
For me, a cherished memory is a 45-minute 
journey from Rutgers to Princeton, when 
Conway gave me a car ride. He mentioned three 
interesting problems in combinatorics during 
the ride and when we reached, showed me a 
card trick before I left. I listened to a lecture 
by Conway, which was on graph theory, where 
he walked in with a structure he had built with 
magnetic rods, and used it to pose problems 
that led to enumerative combinatorics. What he 
talked about in the lecture was original research, 
but he never published any of it. This was typical 
of John Conway: doing mathematics was always 
in a spirit of play, occasionally some theorems 
might be for publication.
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